Prolog

Fundamentals of Artificial Intelligence

Slides are taken from
William Mitchell (University of Arizona)
Ulle Endriss (Univ. Amsterdam)
Stuart C. Shapiro (SUNY, Buffalo)

Basic Prolog

By
Ulle Endriss(University of Amsterdam)

What is Prolog?

Prolog (programming in logic) is a logic-based programming
language: programs correspond ﬁo sets of logical formulas and

the Prolog interpreter uses logical methods to resolve queries.

Prolog is a declarative language: vou specify what problem you

want to solve rather than how to solve it.

Prolog is very useful in some problem areas, such as artificial
intelligence, natural language processing, databases, ..., but
pretty useless in others, such as for instance graphics or

numerical algorithms.

The objective of this first lecture is to introduce you to the

most basic concepts of the Prolog programming language.

Facts
A little Prolog program consisting of four facts:

bigger (elephant, horse).
bigger (horse, donkey).
bigger (donkey, dog).
bigger (donkey, monkey).

Queries
After compilation we can query the Prolog system:

7- bigger (donkey, dog).

Yes

7?- bigger (monkey, elephant).
No

A Problem

The following query does not succeed!

7- bigger(elephant, monkey).
No

The predicate bigger/2 apparently is not quite what we want.

What we’d really like is the transitive closure of bigger/2. In
other words: a predicate that succeeds whenever it is possible to go
from the first animal to the second by iterating the previously
defined facts.

Rules

The following two rules define is_bigger/2 as the transitive

closure of bigger/2 (via recursion):

is_bigger (X, Y) :- bigger(X, Y).

is_bigger(X, Y) :- bigger (X, Z), is_bigger(Z, Y).
| 1

“if” “and”

Now it works

?- is_bigger(elephant, monkey).

Yes
Even better, we can use the variable X:

?- is_bigger (X, donkey).
X = horse ;

X = elephant ;

No

Press ; (semicolon) to find alternative solutions. No at the end

indicates that there are no further solutions.

Another Example

Are there any animals which are both smaller than a donkey and
bigger than a monkey?

7- is_bigger(donkey, X), is_bigger (X, monkey).
No

10

Terms

Prolog terms are either numbers, atoms, variables, or compound

terms.

Atoms start with a lowercase letter or are enclosed in single quotes:
elephant, xYZ, a_123, ’Another pint please’

Variables start with a capital letter or the underscore:

X, Elephant, _G177, MyVariable,

Terms (cont.)

Compound terms have a functor (an atom) and a number of

arguments (terms):

is_bigger (horse, X)
f(g(Alpha, _), 7)
"My Functor’ (dog)

Atoms and numbers are called atomic terms.
Atoms and compound terms are called predicates.

Terms without variables are called ground terms.

11

Facts and Rules

Facts are predicates followed by a dot. Facts are used to define

something as being unconditionally true.

bigger (elephant, horse).

parent (john, mary).

Rules consist of a head and a body separated by :-. The head of a
rule is true if all predicates in the body can be proved to be true.

grandfather (X, Y) :-
father(X, Z),
parent(Z, Y).

12

13

Programs and Queries

Programs: Facts and rules are called clauses. A Prolog program is

a list of clauses.
Queries are predicates (or sequences of predicates) followed by a

dot. They are typed in at the Prolog prompt and cause the system

to reply.

?- is_bigger(horse, X), is_bigger (X, dog).
X = donkey

Yes

Built-in Predicates

e Compiling a program file:
7?7- consult(’big-animals.pl’).
Yes

e Writing terms on the screen:

7- write(’Hello World!’), nl.
Hello World!

Yes

14

Matching

Two terms match if they are either identical or if they can be made

identical by substituting their variables with suitable ground terms.

We can explicitly ask Prolog whether two given terms match by
using the equality-predicate = (written as an infix operator).

?- born(mary, yorkshire) = born(mary, X).
X = yorkshire

Yes

The variable instantiations are reported in Prolog’s answer.

15

Matching (cont.)

?7- f(a, gX, Y)) = £X, Z2), Z = g(W, h(X)).
X = a

Y = h(a)

Z = g(a, h(a))
W=a

Yes

- pX, 2, 2) =p(, Y, X).
No

16

The Anonymous Variable

The variable _ (underscore) is called the anonymous variable.
Every occurrence of _ represents a different variable (which is why

instantiations are not being reported).

- p(_, 2, 2) =p(1, Y, _).
Y =2

Yes

17

18

Answering Queries

. ' Ty ans provi ¢ » ooal represente .
Answering a query means proving that the goal represented by that
query can be satisfied (according to the programs currently in
memory).

Recall: Programs are lists of facts and rules. A fact declares
something as being true. A rule states conditions for a statement
being true.

19

Answering Queries (cont.)
If a goal matches with a fact, then it is satisfied.

If a goal matches the head of a rule, then it is satisfied if the
goal represented by the rule’s body is satisfied.

If a goal consists of several subgoals separated by commas, then
it is satisfied if all its subgoals are satisfied.

When trying to satisfy goals with built-in predicates like
write/1 Prolog also performs the associated action (e.g.
writing on the screen).

Example: Mortal Philosophers

Consider the following argument:

All men are mortal.

Socrates 1s a man.

Hence, Socrates is mortal.

It has two premises and a conclusion.

20

Translating it into Prolog
The two premises can be expressed as a little Prolog program:

mortal (X) :- man(X).

man (socrates) .
The conclusion can then be formulated as a query:

?7- mortal(socrates).

Yes

21

22

Goal Execution
The query mortal (socrates) is made the initial goal.

Prolog looks for the first matching fact or head of rule and
finds mortal (X). Variable instantiation: X = socrates.

This variable instantiation is extended to the rule’s body, i.e.

man (X) becomes man(socrates).
New goal: man(socrates).
Success, because man(socrates) is a fact itself.

Therefore, also the initial goal succeeds.

23

Programming Style —
It is extremely important that you write programs that are easily
understood by others! Some guidelines:
e Use comments to explain what you are doing:

/* This is a long comment, stretching over several

lines, which explains i1n detail how I have implemented

the aunt/2 predicate ... *x/

aunt (X, Z) :-

sister(X, Y), Y% This is a short comment.

parent (Y, Z).

24

Programming Style (cont.)
Separate clauses by one or more blank lines.

Write only one predicate per line and use indentation:

blond(X) :-
father (Father, X),
blond(Father),
mother (Mother, X),
blond (Mother) .

(Very short clauses may also be written in a single line.)

Insert a space after every comma inside a compound term:

born(mary, yorkshire, ’01/01/1980’)

Write short clauses with bodies consisting of only a few goals.
If necessary, split into shorter sub-clauses.

Choose meaningful names for your variables and atoms.

25

Summary: Syntax

All Prolog expression are made up from terms (numbers,

atoms, variables, or compound terms).

Atoms start with lowercase letters or are enclosed in single

quotes; variables start with capital letters or the underscore.
Prolog programs are lists of facts and rules (clauses).
Queries are submitted to the system to initiate a computation.

Some built-in predicates have special meaning.

26

Summary: Answering Queries

When answering a query, Prolog tries to prove that the
corresponding goal is satisfiable (can be made true). This is
done using the rules and facts given in a program.

A goal is executed by matching it with the first possible fact or
head of a rule. In the latter case the rule’s body becomes the

new goal.

The variable instantiations made during matching are carried
along throughout the computation and reported at the end.

Only the anonymous variable _ can be instantiated differently

whenever it occurs.

More on Prolog

By
William Mitchell (University of Arizona)

Facts and queries
A Prolog program is a collection of facts, rules, and queries. We'll talk about facts first.

Here 1s a small collection of Prolog facts:

% cat foods.pl
food('apple').
food('broccoli').
food('carrot').
food('lettuce').
food('rice').

These facts enumerate some things that are food. We might read them in English like this:
"An apple is food", "Broccoli 1s food", etc.

A fact represents a piece of knowledge that the Prolog programmer deems to be useful. The
name food was chosen by the programmer. One alternative is edible ('apple').

"apple' is an example of an atom. Note the use of single quotes, not double quotes. We'll
learn more about atoms later.

5 pl (That's "PL")
Welcome to SWI-Prolog (Multi-threaded, Version 5.6.20)

?- [foods]. (Note that " pl" is assumed; DON'T specify it!)
% foods compililed 0.00 sec, 1,488 bytes

(To save space the slides usually won't show this blank line.)
Yes

Once the facts are loaded we can perform gueries:

?- food('carrot'). % Don't forget the trailing period!!
Yes

?7- food('peach').
No

Prolog responds based on the facts it has been given. People know that peaches are food but
Prolog doesn't know that because there's no fact that says that.

A query can consist of one or more goals. The queries above consist of one goal.

Here's a fact:
food('apple').

Here's a query:
food('apple').

Facts and queries have the same syntax. Thev are distineuished bv the context in which they
appear.

If a line 1s typed at the interactive 7 - prompt, it is interpreted as a query.

When a file 1s loaded with [fi Iename], its contents are interpreted as a collection of facts.
Loading a file of facts 1s also known as consulting the file.

We'll see later that files can contain "rules", too. Facts and rules are two types of clauses.

For the time being use all-lowercase filenames with the suffix . p1 for Prolog source files.

Facts and queries, continued

An alternative to specifying an atom, like 'apple', in a query is to specify a variable. In
Prolog an identifier is a variable iff it starts with a capital letter.

?— food(Edible).
Edible = apple <cursor is here>

A query like food ("apple ') asks if it is known that apple is a food.

The above query asks, "Tell me something that you know 1s a food."

Prolog uses the first food fact and responds with Edible = apple, using the variable
name specified in the query.

If the user is satisfied with the answer apple, pressing <ENTER> terminates the query.
Prolog responds with "Yes" because the query was satisfied.

?— food(Edible) .
Edible = apple <ENTER>
Yes

Facts and queries, continued

If for some reason the user 1s not satistfied with the response apple, an alternative can be
requested by typing a semicolon, without <ENTER>.

?- food(Edible).
Edible = apple ;
Edible = broccoli ;
Edible = carrot ;
Edible = lettuce ;
Edible = rice ;

No

In the above case the user exhausts all the facts by repeatedly responding with a semicolon.
Prolog then responds with "No".

It is very important to recognize that a simple set of facts lets us perform two distinct
computations: (1) We can ask if something is a food. (2) We can ask what all the foods are.

"Can you prove it?"

One way to think about a query 1s that we're asking Prolog if something can be "proven"
using the facts (and rules) it has been given.

The query
?7- food('apple').

can be thought of as asking, "Can you prove that apple is a food?" It is trivially proven
because we've supplied a fact that says that apple is a food.

The query

?—- food('pickle').

produces "No" because based on the facts we've supplied, Prolog can't prove that pickle is a

food.

"Can you prove it?", continued

Consider again a query with a variable:

7- food(F). % Remember that an initial capital denotes a variable.
= apple ;

= broccoli ;

= carrot ;

= lettuce ;

rice ;

£ - - I - |

No

The query asks, "For what values of F can you prove that F' is a food? By repeatedly entering
a semicolon we see the full set of values for which that can be proven.

The collection of knowledge at hand, a set of facts about what is food, is trivial but Prolog 1s
capable of finding proofs for an arbitrarily complicated body of knowledge.

Atoms
It was said that 'apple' 1s an atom.

One way to specify an atom 1s to enclose a sequence of characters in single quotes. Here are
some examples:

' just testing '
"IEHSENE ()]
'don\'t' % don't

An atom can also be specified by a sequence of letters, digits, and underscores that begins
with a lowercase letter. Examples:

apple % Look, no quotes!
twentyZ

getValue

term to atom

Is 1t common practice to avoid quotes and use atoms that start with a lowercase letter:

food (apple) .
food (broccoli) .

Atoms, continued

We can use atom to query whether something is an atom:

?7- atom('apple').
Yes

?- atom(apple) .
Yes

?- atom(Apple) . % Uppercase "A". It's a variable, not an atom!

?7- atom("apple”).

Predicates, terms, and structures

Here are some more examples of facts:
color(sky, blue).
color (grass, green).
odd(1l). odd(3). odd(5).
number (one, 1, 'English').
number (uno, 1, 'Spanish').
number (dos, 2, 'Spanish').

We can say that the facts above define three predicates: color /2, odd/1, and number/ 3.
The number following the slash is the number of terms in the predicate.

Predicates, terms, and structures, continued
A term 1s one of the following: atom, number, structure, varable.

Structures consist of a functor (always an atom) followed by one or more terms enclosed in
parentheses.

Here are examples of structures:

color (grass, green)

odd (1)

number (uno, 1, 'Spanish')

equal (V, V)

lunch (sandwich (ham), fries, drink(coke))
The structure functors are color, odd, number, equal, and 1unch, respectively.
Two of the terms of the last structure are structures themselves.

Note that a structure can be interpreted as a fact or a goal, depending on the context.

More queries

A query that requests green things: color (sky, blue).
color (dirt, brown).
?- color (Thing, green). color (grass, green).
Thing = grass ; color (broccoli, green).
Thing = broccoli ; color (lettuce, green).
Thing = lettuce ; color (apple, red).
No color (carrot, orange).
color (rice, white).
A query that requests each thing and its color:

?- color (Thing, Color).
Thing = sky
Color = blue ;

Thing = dirt
Color = brown ;

Thing = grass
Color = green ;

We're essentially asking this: For what pairs of Thing and Color can you prove color?

More queries, continued

A query can contain more than one goal. This a query that
directs Prolog to find a food F that 1s green:

?- food(F), color (F, green).

F = broccoll ;
FF = lettuce ;
No

The query has two goals separated by a comma, which
indicates conjunction—both goals must succeed in order
for the query to succeed.

We might state it like this: "Is there an F for which you can
prove both food (F) and color (F, green)?

Let's see 1f any foods are blue:

?- color (F, blue), food(F).
No

food(apple) .
food(broccoli).
food(carrot) .
food(lettuce).
food(rice) .

color(sky, blue).
color(dirt, brown).
color (grass, green).

color (brocceoli, green).
color (lettuce, green).

color (apple, red).

color (carrot, orange).

color(rice, white).
color(rose, red).
color (tomato, red) .

Note that the ordering of the goals was reversed. In this case the order doesn't matter.

Goals are always executed from left to right.

AN

More queries, continued
Write these queries:
Who likes baseball?

Who likes a food?

Who likes green foods?

Who likes foods with the same color as foods that

Mary likes?

Answers:

liksx|mscy, Ff, food [F}, colac|F,Cf, 1iksx[Who, F2}, faod[F2}, calac([F2,Cf .

food (apple).

color (sky,blue).

likes (bob, carrot).
likes (bob, apple).
likes (joe, lettuce).
likes (mary, broccoli).
likes (mary, tomato).
likes (bob, mary).
likes (mary, 7joe).
likes (joe, baseball).
likes (mary, baseball).
likes (jim, baseball) .

More queries, continued

Are any two foods the same color?

?- food(Fl) ,food (F2) ,color(F1l,C) ,color(F2,C).

F1l = apple
F2 = apple
C = red ;

F1l = broccoli
F2 = broccoli
C = green ;

To avoid foods matching themselves we can specify "not equal”™ with \ ==,

?- food(Fl), food(F2), F1 \== F2, color(Fl,C), color(F2,C).
F1l = broccoli

F2 = lettuce

C = green

Remember that in order for a query to produce an answer for the user, all goals must succeed.

Etymology: \ == symbolizes a struck-through "equals".

42

Alternative representations

A given body of knowledge may be represented in a variety of ways using Prolog facts. Here
is another way to represent the food and color information:

thing (apple, red, vyes).
thing(broccoli, green, yes).
thing(carrot, orange, vyes).
thing(dirt, brown, no).
thing(grass, green, no).
thing(lettuce, green, vyes).
thing(rice, white, vyes).
thing(sky, blue, no).

Eee e T e e T e T i

What 1s a food?

?- thing (X, , yes).
X = apple ;

X = broccoli ;

X = carrot ;

The underscore designates an anonymous logical variable. It indicates that any value
matches and that we don't want to have the value associated with a variable (and displayed).

43

Alternate representation, continued

Practice: thing
thing
What is green that is not a food? thing
thing
thing
What color is lettuce? thing
thing
thing

apple, red, yes).
broccoli, green, vyes).
carrot, orange, vyes).
dirt, brown, no).
grass, green, no).
lettuce, green, vyes).
rice, white, ves).
sky, blue, no).

Eee T e T e T e T e T i T i T

What foods are orange?

What foods are the same color as lettuce?

[s thing/3 a better or worse representation of the knowledge than the combination of
food/1 and color/2?

Answers:

thing[K, gresn, mna).
ting(F, orangs, ys=j.

45

Unification
Prolog has a more complex notion of equality than conventional languages.

The operators == and \ == test for equality and inequality. They are roughly analogous
to=/<>in ML and ==/ ! = in Ruby:

?7- abec == 'abc'.
Yes

?7— 3 \== 5.
Yes

?7- abc(xyz) == abc(xyz).
Yes

?7- abec(xyz) == abc(xyz,123).
No

Just like comparing tuples and lists in ML, and arrays in Ruby, structure comparisons in
Prolog are "deep". Two structures are equal if they have the same functor, the same number

of terms, and the terms are equal. Later we'll see that deep comparison is used with lists, too.

Think of == and \ == as asking a question: is one thing equal (or not equal) to another.

Unification, continued

The = operator, which we'll read as "unify"” or "unify with", can be used in a variety of ways.
[fboth operands are variables then A = B specifies that A must have the same value as B.
Examples:

?- A abc, A = B.

No

I
=
o
Il

?—H=1,E=IIR=E_

A =1
B =1 <CR>
Yes

Unification is not a question: it is a demand! Consider the following:

?-A=B, B=1.
B =1

There are two unifications. The first unification demands that A must equal B. The second
unification demands that B must equal 1. In order to satisfy those two demands, Prolog says

that A must be 1.

46

47

Unification, continued

Here's how we might say that S must be a structure with functor £ and term A, and that A
must be abc:

?- 8§ = f£f(A), A = abc.
S = f(abc)

A = abc

Yes

As a result of the unifications, S 1s instantiated to £ (abc) and A 1s instantiated to abece.
A series of unifications can be arbitrarily complex. Here's a more complicated sequence:

?- Terml = B, S = abc(Terml,Term2), B = abc, Term2=g(B,B,xyz) .
Terml = abc

B = abc

S = abc(abc, glabc, abc, xvyz))

TermZ2 = g(abc, abc, xyz)

Remember that a query specifies a series of goals. The above goals can be placed in any
order. The result 1s the same regardless of the order.

48

Unification, continued
We can think of the query
?- food(carrot).
as a search for facts that can be unified with food (apple).
Here's a way to picture how Prolog considers the first fact, which is food (apple).

?- Fact = food(apple), Query = food(carrot), Fact = Query.
No

The demands of the three unifications cannot be satisfied simultaneously . The same 1s true
for the second fact, food (broccoli).

The third fact produces a successful unification:

?- Fact = food(carrot), Query = food(carrot), Fact = Query.

Fact = food(carrot)
Query = food(carrot)
Yes

The instantiations for Fact and Query are shown, but are no surprise.

Unification, continued

Things are more interesting when the query involves a variable, like ?7- food (F) .
?- Fact = food(apple), Query = food(F), Query = Fact.
Fact = food(apple)
Query = food(apple)
F''= apple

The query succeeds and Prolog shows that F has been instantiated to apple.

49

50

Unification, continued
Consider again this interaction:

?- food(F).
F'= apple ;

F = broccoli ;
FF = carrot ;

FF = lettuce ;
F = rice ;

No

Prolog first finds that food (apple) can be unified with food (F) and shows that F is
instantiated to apple.

When the user types semicolon F is uninstantiated and the search for another fact to unify
with food (F) resumes.

food (broccoli) 1s unified with food (F), F 1s instantiated to broccoli, and the user
is presented with F = broccoli.

The process continues until Prolog has found all the facts that can be unified with food (F)
or the user 1s presented with a value for F that 1s satisfactory.

51

Unification, continued

Following an earlier example, here's how we might view successful unifications with
the query 2= food (F), color(F,C):

?—- Factl = food(lettuce), Fact2 = color(lettuce,green),
Queryl = food(F), Query2 = color(F,C),
Factl = Queryl, Fact2 = Query?2.

2
I

= green
FF = lettuce

Only the interesting instantiations, for F and C, are shown above
What we see is that unifying Fact1 with Queryl causes F to be instantiated to lettuce.

Quervy2, which due to the value of F is effectively color (lettuce, C). can be unified
with Fact2 if C is instantiated to green.

Unification and variable mstantiation are cornerstones of Prolog.

Query execution

Goals, like food (fries) or color (What, Color) can be thought of as having four

ports:
call exit
— S 4
: oal
fail S redo
-— -—

Inthe Active Prolog Tutor, Dennis Merriit describes the ports in this way:

call: Using the current variable bindings, begin to search for the facts which unify with
the goal.

exit: Set a place marker at the fact which satisfied the goal. Update the variable table to
reflect any new variable bindings. Pass control to the right.

redo: Undo the updates to the variable table [that were made by this goal]. At the place
marker, resume the search for a clause which unifies with the goal.

fail: ~ No (more) clauses unify, pass control to the left.

Query execution, continued

Example:
?7- food(X).
X = apple ;
X = broccoli ;
X = carrot ;
X = lettuce ;
X = rice ;
No

Eemdilrnnamsla] .

Toodi{lettuce) .

(

{
foodlcarroty ;

{

{

food({rice).

call exit
_can o | Exlv |
fail food(X) redo
g I
food{apple).

53

54

Query execution, continued

The goal trace/0 activates "tracing" for a ﬂ, exif >
query. Here's what it looks like: . food(X
fail (X) redo
i SN 4
?7- trace, food(X).

Call: fDDd{_Gle} ? <CR>

Exit: food(apple) ? <CR> food(apple}..

X = apple ; Toad thracesal 1) ¢
Redo: food(G410) ? <CR> food(carrot).
Exit: food(broccoli) ? <CR> FoodileEEuee) .

X = broccoli ; foodirice).

Redo: fDod{_GﬂlD} 7 <CR>
Exit: food(carrot) 7? <CR>
¥ = carrot ;

Tracing shows the transitions through each port. The first transition 1s a call on the goal
food (X). The value shown, G410, stands for the uninstantiated variable X. We next see
that goal being exited, with X instantiated to apple. The user isn't satisfied with the value
and by typing a semicolon forces the redo port to be entered, which causes X, previously
bound to apple, to be umnstantiated. The next food fact, food (broccoli) 1s tried,
instantiating X to broccoli, exiting the goal, and presenting X = broccoli to the user.
(etc.)

Query execution, continued

Query: Who likes green foods?

?- food(F), likes (Who,F), color(F, green).

call exit/call exit/call exit
fail food(F) redo/fail likes(Who,F) redo/fail color(F,green)| redo
Facts:
food(apple). likes (bob, carrot). color(sky, blue).
food(broccoli). likes(bob, apple). color(dirt, brown).
food(carrot) . likes (joe, lettuce). color (grass, green).
food(lettuce). likes (mary, brocceli). color(broccoli,green).
food(rice). likes (mary, tomato). color (lettuce, green).
likes (bob, mary). color (apple, red).
likes (mary, joe). color (tomato, red).
likes (joe, baseball). color (carrot, orange).
likes (mary, baseball). color (rose, red).
likes(jim, baseball). color(rice, white).

Try tracing it!

55

Another example ot rules

Here 1s a set of facts describing parents and children:

male (tom) . parent (tom, betty) . 9
male (jim) . parent (tom, bob) . -R
male (bob) . parent (jane, betty) . \
male (mike) . parent (jane, bob) .
male (david) . parent (jim, mike) . il
. . Mike
parent (jim, david) .
female (jane) . parent (betty,mike) .
female (betty) . parent (betty,david) .
female (mary) . parent (bob, alice) .
female(alice) . parent (mary,alice).

parent (P, C) isread as "P is a parent of C".

Problem: Define rules for father (F,C) and grandmother (GM, GC).

Tom & Jane
ff"f/\\
Jim & Betty

s
ol \

Bob & Mary

56

Another example, continued

father (F,C) :- parent(F,C), male (F).
mother (M,C) :- parent(M,C), female(M).
grandmother (GM,GC) :- parent(P,GC), mother (GM,P).

Who 1s Bob's father?

For who 1s Tom the father?

What are all the father/child relationships?

What are all the father/daughter relationships?

What are the grandmother/grandchild relationships?

Problems: Define sibling (A, B), such that "A 1s a sibling of B".
Using sibling, define brother (B, A) such that "B 1s A's brother".

Another example, continued

sibling(A,B) :- father(F,A), mother (M,2),
father (F,B), mother(M,B), A \==

Queries:
[s Mike a sibling of Alice?
What are the sibling relationships?

Who is somebody's brother?

[s the following an equivalent definition of sibling?

sibling2 (S1,S2) :- parent(P,S1), parent(P,S2),

S1 \== 52.

58

59

Recursive predicates

Consider an abstract set of parent/child relationships: ¢ d £ /'g
- "
parent (a, b) . parent (c,d) . ‘Kc/ﬂ ,ﬂ’
parent (a, c) . parent (b, f) . txx j;rb
parent (c,e) . parent (£,qg) . a

[fa predicate contains a goal that refers to itself the predicate is said to be recursive.

ancestor (A,X) :- parent (A, X).
ancestor (A,X) :- parent(P, X), ancestor(A,P).

"2 1s an ancestor of X 1f A 1s the parent of X or P 1s the parent of X and A 1s an ancestor of B."

?- ancestor(a,f). % Is a an ancestor of [?

Yes

?- ancestor(c,b). % Is c an ancestor of b?

No

?- ancestor (c,Descendant) . % What are the descendants of b?
Descendent = e ;

Descendent = d ;

No

60

Logic and Prolog

by
Stuart C. Shapiro (SUNY, Buffalo)

Horn Clauses

61

A Horn Clause is a clause with at most one positive literal.

Either {—-Q1(Z),...,Q,(T)} (negative Horn clause)

or {C(7)} (fact or positive or definite Horn clause)
or {—A{(T),...,nA,(T),C(T)} (positive or definite Horn clause)
which is the same as

AL(T)AN---NAL(T) = C(T)
where A;(T), C(T), and Q(T) are atoms.

SLD Resolution

62

Selected literals, Linear pattern, over Definite clauses

SLD derivation of clause ¢ from set of clauses S is
Cleve...Cp = C
s.t. c; €S

and c¢; 1 is resolvent of ¢; and a clause in S. [B&L, p. 87]

If S is a set of Horn clauses,
then there is a resolution derivation of {} from S
iff there is an SLD derivation of {} from S.

SLDSolve

63

procedure SLDSolve(KB,query) returns true or false {

/* KB = {rule;,...,rule,}

* rule; = {hi?_'bij ge ey _‘bikt-}

* query = {—q1,...,7qm} ¥/

if (m = 0) return true;

fori:=1ton {

if ((4 := Unify(q1, hi)) # FAIL

and SLDSolve(KB, {=b;ip, ..., =bik, pt, ~qapty ..., ~qmp})) {
return true;

}
}
return false;
}
Where h;, b;j, and g; are atomic formulae.

See B&L, p. 92

Example Prolog Interaction

<timberlake:~/.xemacs:1:35> sicstus

SICStus 4.0.5 (x86_64-1linux-glibc2.3): Thu Feb 12 09:48:30 CET 2009
Licensed to SP4cse.buffalo.edu

| ?- consult(user).

% consulting user...

| driver(X) :- drives(X,_).

| passenger(Y) :- drives(_,Y).

| drives(betty,tom).

|

% consulted user in module user, 0 msec 1200 bytes
yes

| ?- driver(X), passenger(Y).

X = betty,

Y = tom 7

| 7- halt.

Prolog Program with two answers

65

%» From Rich & Knight, 2nd Edition (1991) p. 192.

likesToEat (X,Y) :- cat(X), fish(Y).
cat(X) :- calico(X).
fish(X) :- tuna(X).

tuna(charlie).
tuna (herb) .

calico(puss).

Listing the Fish Program

| 7- listing.
calico(puss).

cat(A) :-
calico(A).

fish(aA) :-
tuna(A) .

likesToEat(A, B) :-
cat(A),
fish(B).

tuna(charlie).
tuna(herb).
yes

Note: consult(File) loads the File in interpreted mode, whereas [File] loads the
File in compiled mode. listing is only possible in interpreted mode.

Running the Fish Program

<timberlake:CSE563:1:39> sicstus

SICStus 4.0.5 (x86_64-linux-glibc2.3): Thu Feb 12 09:48:30 CET 2009
Licensed to SP4cse.buffalo.edu

| ?- [’fish.prolog’].

% compiling /projects/shapiro/CSE563/fish.prolog...

% compiled /projects/shapiro/CSE563/fish.prolog in module user, O mse

yes

| ?- likesToEat (puss,X).
X = charlie 7 ;
X = herb 7 ;

no

| ?- halt.
<timberlake:CSE563:1:40>

Tracing the Fish Program

| ?7- [’fish.prolog’].
% consulting /projects/shapiro/CSE563/fish.prolog...
% consulted /projects/shapiro/CSE563/fish.prolog in module user, O

yes
| ?- trace.

%» The debugger will first creep -- showing everything (trace)
yes

% trace

Tracing First Answer

?7- likesToEat(puss,X).
1 1 Call: likesToEat(puss,_442) 7

2 2 Call: cat(puss) 7

3 3 Call: calico(puss) 7

3 3 Exit: calico(puss) 7

2 2 Exit: cat(puss) 7

4 2 Call: fish(_442) 7

5 3 Call: tuna(_442) 7

5 3 Exit: tuna(charlie) 7

4 2 Exit: fish(charlie) 7

1 1 Exit: likesToEat(puss,charlie) 7

= charlie 7 ;

X = charlie 7 ;

Tracing the Second Answer

1

4

5

5

4

1
X = herb 7 ;
no
% trace

| ?- notrace.

% The debugger

yes

b

Redo: likesToEat(puss,charlie) 7
Redo: fish(charlie) 7

Redo: tuna(charlie) 7

Exit: tuna(herb) 7

Exit: fish(herb) ?

Exit: likesToEat (puss,herb) 7

= N W W N =

1s switched off

Backtracking Example

Program:

bird(tweety).

bird(oscar).

bird(X) :- feathered(X).
feathered(maggie) .

large(oscar) .

ostrich(X) :- bird(X), large(X).

Run (No backtracking needed):

| ?7- ostrich(oscar).

1 1 Call: ostrich(oscar) 7

2 2 Call: bird(oscar) 7
? 2 2 Exit: bird(oscar) 7
3 2 Call: large(oscar) 7
3 2 Exit: large(oscar) 7
? 1 1 Exit: ostrich(oscar) 7

yes

Backtracking Used

?7- ostrich(X).

1 1 Call: ostrich(_368) 7
2 2 Call: bird(_368) 7
? 2 2 Exit: bird(tweety) 7
3 2 Call: large(tweety) 7
3 2 Fail: large(tweety) 7
2 2 Redo: bird(tweety) 7
7 2 2 Exit: bird(oscar) 7
. 2 Call: large(oscar) 7
- 2 Exit: large(oscar) 7
? 1 1 Exit: ostrich(oscar) 7
X = oscar 7

yes

Backtracking: Effect of Query

/projects/shapiro/CSE563/Examples/Prolog/backtrack.prolog:

supervisor0f (X,Y) :- manager0f(X,Z), department0f(Y,Z).
manager(0f (jones,accountingDepartment) .

manager0f (smith,itDepartment) .

department0f (kelly,accountingDepartment) .

department0f (brown,itDepartment) .

Backtracking not needed:

| ?- supervisorOf(smith,X).
1 1 Call: supervisorOf(smith,_380) ?

2 2 Call: managerOf (smith,_772) ?
2 2 Exit: managerOf (smith,itDepartment) 7
3 2 Call: department0f(_380,itDepartment) ?
3 2 Exit: departmentOf (brown,itDepartment) ?
1 1 Exit: supervisor0Of(smith,brown) ?

X = brown 7

Backtracking Example, part 2

supervisor0f (X,Y) :- manager0f(X,Z), department0f(Y,Z).
manager0f (jones,accountingDepartment) .

manager0f (smith,itDepartment) .

department0f (kelly,accountingDepartment) .

departmentOf (brown,itDepartment) .

| ?- supervisor0f (X,brown).
1 1 Call: supervisor0Of(_368,brown) ?

2 2 Call: manager0f(_368,_772) 7
? 2 2 Exit: manager(0f (jones,accountingDepartment) 7
3 2 Call: departmentOf (brown,accountingDepartment) 7
3 2 Fail: departmentOf (brown,accountingDepartment) 7
2 2 Redo: managerOf (jones,accountingDepartment) ?
2 2 Exit: manager(Of (smith,itDepartment) 7
4 2 Call: departmentOf (brown,itDepartment) 7
4 2 Exit: departmentOf (brown,itDepartment) 7
1 1 Exit: supervisnrﬂf{smith,brnwn} 7
X = smith 7

yes

Negation by Failure
& The Closed World Assumption

| ?- [user].
% consulting user...
| manager (jones, itSection).

| manager(smith, accountingSection).

% consulted user in module user, O msec 416 bytes
yes

| ?- manager(smith, itSection).

no

| ?- manager(kelly, accountingSection).

O

Negation by failure: “no” means didn’t succeed.
CWA': If it’s not in the KB, it’s not true.

Cut: Preventing Backtracking
KB Without Cut

| ?- consult(user).
% consulting user...
| bird(oscar).

| bird(tweety).

| bird(X) :- feathered(X).

| feathered(maggie) .

| large(oscar).

| ostrich(X) :- bird(X), large(X).
|

% consulted user in module user, 0 msec 1120 bytes

yes

7R

No Backtracking Needed

| ?- trace.

% The debugger will first creep -- showing everything (trace)
yes

% trace

| ?- ostrich(oscar).

1 1 Call: ostrich(oscar) ?

2 2 Call: bird(oscar) 7
? 2 2 Exit: bird(oscar) 7

3 2 Call: large(oscar) 7

3 2 Exit: large(oscar) 7
7 1 1 Exit: ostrich(oscar) 7
yes

% trace

Unwanted Backtracking

7- ostrich(tweety).
1 1 Call: ostrich(tweety) 7

2 2 Call: bird(tweety) 7
7 2 2 Exit: bird(tweety) 7
3 2 Call: large(tweety) 7
3 2 Fail: large(tweety) 7
2 2 Redo: bird(tweety) 7
4 3 Call: feathered(tweety) 7
4 3 Fail: feathered(tweety) 7
2 2 Fail: bird(tweety) 7
1 1 Fail: ostrich(tweety) 7
no

No need to try to solve bird (tweety) another way.

KB With Cut

| ?- consult(user).

% consulting user...

| bird(oscar).

| bird(tweety).

| bird(X) :- feathered(X).

| feathered(maggie).

large (oscar) .

ostrich(X) :- bird(X), !, large(X).

% consulted user in module user, 0 msec -40 bytes
yes

7% trace

79

No Extra Backtracking

7- ostrich(tweety).
1 1 Call: ostrich(tweety) 7

2 2 Call: bird(tweety) 7
7 2 2 Exit: bird(tweety) 7

3 2 Call: large(tweety) 7

3 2 Fail: large(tweety) 7

1 1 Fail: ostrich(tweety) 7
no

% trace

fail: Forcing Failure
If something is a canary, it is not a penguin.

| ?- consult(user).

% consulting user...

| penguin(X) :- canary(X), !, fail.

| canary(tweety).

|

% consulted user in module user, 0 msec 416 bytes
yes

% trace

| ?7- penguin(tweety).

1 Call: penguin(tweety) 7
2 Call: canary(tweety) 7
2 Exit: canary(tweety) 7

= R R

1 Fail: penguin(tweety) 7
no

% trace

Cut Fails the Head Instance: Program

penguin(X) :- canary(X), !, fail.
penguin(X) :- bird(X), swims(X).

canary (tweety) .
bird(willy).

swims(willy).

Cut Fails the Head Instance: Run

| ?- penguin(willy).

1 Call: penguin(willy) 7
Call: canary(willy) 7
Fail: canary(willy) 7
Call: bird(willy) 7
Exit: bird(willy) 7
Call: swims(willy) 7

Exit: swims(willy) 7

=l o W W R R
(ol o T o B % T o I B o

Exit: penguin(willy) 7
yes

Y, trace

| ?- penguin(tweety).

1 Call: penguin(tweety) 7
2 Call: canary(tweety) 7
2 Exit: canary(tweety) 7

[l L I+ B

1 Fail: penguin(tweety) 7

no

Cut Fails Head Alternatives

7- penguin(X).

1 1 Call: penguin(_368) 7
2 2 Call: canary(_368) 7
2 2 Exit: canary(tweety) 7
1 1 Fail: penguin(_368) 7
no
Moral:

Use cut when seeing if a ground atom is satisfied (T /F question),
but not when generating satisfying instances (wh questions).

penguin (X)
penguin (X)

bird(X)

:~ canary (X).

canary (tweety) .

Y. trace

| ?- penguin(tweety).

no

1

= o o e W W b

1

(ol o T % I e B T o R O o B

Call:
Call:
Call:
Exit:
Exit:
Call:
Fail:
Call:
Exit:
Fail:

Bad Rule Order

:= bird(X), swims(X).
:- canary(X), !, fail.

penguin(tweety) 7
bird(tweety) 7
canary (tweety) 7
canary (tweety) 7
bird(tweety) 7
swims (tweety) 7
swims (tweety) 7
canary (tweety) 7
canary (tweety) 7
penguin(tweety) 7

85

(Good Rule Order

penguin(X) :- canary(X), !, fail.
penguin(X) :- bird(X), swims(X).
bird(X) :- canary(X).

canary (tweety) .

% trace

| 7- penguin(tweety).
1 1 Call: penguin(tweety) 7
2 2 Call: canary(tweety) 7
2 2 Exit: canary(tweety) 7
1 1 Fail: penguin(tweety) 7

o

86

SICSTUS Allows “or” In Body.

bird(willy) .
swims (willy).
canary (tweety) .
penguin(X) :-
canary(X), !, fail;
bird(X), swims(X).
bird(X) :- canary(X).

| 7- [’twoRuleCutOr.prolog’].

% compiling /projects/shapiro/CSE563/twoRuleCutOr.prolog.. .

* clauses for user:bird/1 are not together

* Approximate lines: 8-10, file: ’/projects/shapiro/CSE563/twoRuleCutOr.prolog’

% compiled /projects/shapiro/CSE563/twoRuleCutOr.prolog in module user, 0 msec 928 bytes
yes

| ?- penguin(willy).

yes

| 7- penguin(tweety).

no

not: “Negated” Antecedents
A bird that is not a canary is a penguin.

| penguin(X) :- bird(X), !, \+canary(X).
| bird(opus).
| canary(tweety).

% compiled user in module user, 0 msec 512 bytes

| ?- penguin(opus) .

1 Call: penguin(opus) 7?
Call: bird(opus) 7
Exit: bird(opus) 7
Call: canary(opus) 7

Fail: canary(opus) 7

= W W N N e
B % B o B o T

Exit: penguin(opus) 7
yes

\+ is SICStus Prolog’s version of not.
It is negation by failure, not logical negation.

driver (X)
drives (mother (X) ,X)

Can Use Functions

schoolchild(betty) .
schoolchild(tom) .

P Pe —

7- driver(X).

mother(betty) 7 ;

mother(tom) 7 ;

:— drives(X,_).
:— schoolchild(X).

89

Infinitely Growing Terms

driver(X) :- drives(X,_).

drives(mother(X) ,X) :- commuter(X).
commuter (betty) .

commuter (tom) .

commuter (mother(X)) :- commuter(X).

?7- driver(X).

mother (betty) 7 ;

= mother(tom) 7 ;

mother (mother (betty)) 7 ;

= mother (mother(tom)) 7 ;

= mother (mother (mother(betty))) 7 ;
mother (mother (mother(tom))) 7

Pe P4 P4 P4 P4 P4 —
Il !

yes

Prolog Does Not Do the Occurs Check

<pollux:CSEb563:2:31> sicstus

| ?- [user].

% consulting user...

| mother (mother0f(X), X).
|

% consulted user in module user, O msec 248 bytes

yes

| ?- mother(Y, Y).

Y = mother0f (motherOf (mother0f (mother0f (motherOf (motherOf (
mother0f (motherOf (mother0f (mother0f(...)))))))))) 7

yes
| 7-

669 fes 99
=" and ‘is
7- p(X, b, f(c,Y)) = p(a, U, £(V,U)).

41
= won
op 0o o

- X is 2%(3+86).
18 7

"=

- X = 2%(3+8).
2%(3+46) 7

1]
=1 0

- X is 2+(3+6), Y is X/3.
18,
6.0 ?

]
i}

7- Y is X/3, X is 2*(3+6).
Instantiation error in argument 2 of is/2
| goal: _76 is _73/3

e R o R B B I Tt B R
[Wi]

Avoid Left Recursive Rules

To define ancestor as the transitive closure of parent.
The base case: ancestor(X,Y) :- parent(X,Y).

Three possible recursive cases:

1. ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
2. ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).
3. ancestor(X,Y) :- ancestor(X,Z), ancestor(Z,Y).

Versions (2) and (3) will cause infinite loops.

	Slide 1: Prolog
	Slide 2: Basic Prolog
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: More on Prolog
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Logic and Prolog
	Slide 61: Horn Clauses
	Slide 62: SLD Resolution
	Slide 63: SLDSolve
	Slide 64: Prolog
	Slide 65: Prolog Program with two answers
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93

