
1

Introduction to Search

Fundamentals of Artificial Intelligence

Slides are mostly adapted from 

AIMA, Svetlana Lazebnik (UIUC) and Percy Liang (Stanford)



2

A farmer wants to get his cabbage, goat, and wolf across a river. 

He has a boat that only holds two. He cannot leave the cabbage 

and goat alone or the goat and wolf alone. 

How many river crossings does he need?



3

When you solve this problem, try to think about how you did it. 

You probably simulated the scenario in your head, trying to 

send the farmer over with the goat, observing the consequences. 

If nothing got eaten, you might continue with the next action. 

Otherwise, you undo that move and try something else. 

How can we get a machine to do this automatically? One of the 

things we need is a systematic approach that considers all the 

possibilities. We will see that search problems define the 

possibilities, and search algorithms explore these possibilities.



4

Sometimes you can do better 

if you change the model 

(perhaps the value of having 

a wolf is zero) instead of 

focusing on the algorithm.



5



6



7



8



9

Types of agents

Reflex agent

• Consider how the world 
IS

• Choose action based on 
current percept 

• Do not consider the future 
consequences of actions

Planning agent

• Consider how the world 
WOULD BE

• Decisions based on 
(hypothesized) consequences 
of actions

• Must have a model of how the 
world evolves in response to 
actions

• Must formulate a goal Source: D. Klein, P. Abbeel



10



11



12



13

Search

• We will consider the problem of designing goal-based 
agents in fully observable, deterministic, discrete, 
known environments

Start state

Goal state



14

Search

• We will consider the problem of designing goal-based 
agents in fully observable, deterministic, discrete, 
known environments 
– The agent must find a sequence of actions that reaches the goal

– The performance measure is defined by (a) reaching the goal 
and (b) how “expensive” the path to the goal is

– We are focused on the process of finding the solution; while 
executing the solution, we assume that the agent can safely 
ignore its percepts (open-loop system)



15

Search problem components

• Initial state

• Actions

• Transition model

– What state results from
performing a given action 
in a given state?

• Goal state

• Path cost

– Assume that it is a sum of 
nonnegative step costs

• The optimal solution is the sequence of actions that gives the 
lowest path cost for reaching the goal

Initial

state

Goal 

state



16

Example: Romania

• On vacation in Romania; currently in Arad

• Flight leaves tomorrow from Bucharest

• Initial state

– Arad

• Actions

– Go from one city to another

• Transition model

– If you go from city A to 
city B, you end up in city B

• Goal state

– Bucharest

• Path cost

– Sum of edge costs (total distance 
traveled)



17

State space

• The initial state, actions, and transition model define the 
state space of the problem
– The set of all states reachable from initial state by any sequence 

of actions

– Can be represented as a directed graph where the nodes are 
states and links between nodes are actions

• What is the state space for the Romania problem?



18

Example: Vacuum world

• States

– Agent location and dirt location

– How many possible states?

– What if there are n possible locations?
• The size of the state space grows exponentially with the “size” 

of the world!

• Actions

– Left, right, suck

• Transition model



19

Vacuum world state space graph



20

Example: The 8-puzzle

• States

– Locations of tiles 

• 8-puzzle: 181,440 states (9!/2)

• 15-puzzle: ~10 trillion states

• 24-puzzle: ~1025 states

• Actions

– Move blank left, right, up, down 

• Path cost 

– 1 per move

• Finding the optimal solution of n-Puzzle is NP-hard

http://www.aaai.org/Papers/AAAI/1986/AAAI86-027.pdf


21

Example: Robot motion planning

• States
– Real-valued joint parameters (angles, displacements)

• Actions
– Continuous motions of robot joints

• Goal state
– Configuration in which object is grasped

• Path cost
– Time to execute, smoothness of path, etc.



22

Search

• Given:

– Initial state

– Actions

– Transition model

– Goal state

– Path cost

• How do we find the optimal solution?

– How about building the state space and then using Dijkstra’s

shortest path algorithm?

• Complexity of Dijkstra’s is O(E + V log V), where V is the size of the 

state space

• The state space may be huge!



23

Search: Basic idea

• Let’s begin at the start state and expand it by making 
a list of all possible successor states

• Maintain a frontier or a list of unexpanded states

• At each step, pick a state from the frontier to expand 

• Keep going until you reach a goal state

• Try to expand as few states as possible



24

Search: Basic idea

start



25

Search: Basic idea



26

Search: Basic idea



27

Search: Basic idea



28

Search: Basic idea



29

Search: Basic idea



30

Search: Basic idea



31

Search: Basic idea



32

Search: Basic idea



33

Search: Basic idea



34

Search: Basic idea



35

Search: Basic idea



36

Search tree

• “What if” tree of sequences of actions and 

outcomes

– When we are searching, we are not acting in the 

world, merely “thinking” about the possibilities

• The root node corresponds to the starting state

• The children of a node correspond to the 

successor states of that node’s state

• A path through the tree corresponds to a 

sequence of actions

– A solution is a path ending in the goal state

• Nodes vs. states

– A state is a representation of the world, 

while a node is a data structure that is 

part of the search tree

• Node has to keep pointer to parent, path cost, possibly 

other info

…

Startin

g state

Success

or state

Action

Goal 

state

Frontier



37

Tree Search Algorithm Outline

• Initialize the frontier using the starting state

• While the frontier is not empty

– Choose a frontier node according to search strategy and 
take it off the frontier

– If the node contains the goal state, return solution

– Else expand the node and add its children to the frontier



38



39



40

Tree search example

Start: Arad

Goal: Bucharest



41

Tree search example

Start: Arad

Goal: Bucharest



42

Tree search example

Start: Arad

Goal: Bucharest



43

Tree search example

Start: Arad

Goal: Bucharest



44

Tree search example

Start: Arad

Goal: Bucharest



45

Tree search example

Start: Arad

Goal: Bucharest



46

Tree search example

Start: Arad

Goal: Bucharest



47

Handling repeated states

• Initialize the frontier using the starting state

• While the frontier is not empty

– Choose a frontier node according to search strategy and take it 
off the frontier

– If the node contains the goal state, return solution

– Else expand the node and add its children to the frontier

• To handle repeated states:

– Every time you expand a node, add that state to the 
explored set; do not put explored states on the frontier again

– Every time you add a node to the frontier, check whether it 
already exists in the frontier with a higher path cost, and if yes, 
replace that node with the new one



48

Search without repeated states

Start: Arad

Goal: Bucharest



49

Search without repeated states

Start: Arad

Goal: Bucharest



50

Search without repeated states

Start: Arad

Goal: Bucharest



51

Search without repeated states

Start: Arad

Goal: Bucharest



52

Search without repeated states

Start: Arad

Goal: Bucharest



53

Search without repeated states

Start: Arad

Goal: Bucharest



54

Search without repeated states

Start: Arad

Goal: Bucharest


