Translating Images to Words: A Novel Approach for Object Recognition

Pınar Duygulu - Şahin

Dept. of Computer Engineering Middle East Technical University

Linking Words to Images

Object recognition on a large scale is linking words with image regions

use joint probability of words and images in large data sets

tiger grass cat

Auto-annotation of images

Predicting words for the images

Barnard and Forsyth (ICCV 2001), Barnard, Duygulu, Forsyth (CVPR2001) Other related work : Maron98, Mori99

Annotation vs recognition

Cannot be resolved with a single example

Statistical machine translation

Data : aligned sentences

but word correspondences are unknown

the big house

la grande maison

Brown et.al.1993

Statistical machine translation

- Given the correspondences, we can estimate the translation $p(big \mid grande)$
- Given the probabilities, we can estimate the correspondences

la grande maison

With enough data, it is possible to obtain the translation

 $p(big \mid grande) = 1$

Multimedia translation

Overview of the system

Data

160 CDs from Corel data set (100 images in each)

10 experimental data sets each:

- randomly selected 80 CDs
- 75% for training
- 25% for testing
- 150-200 words in the vocabulary

sun tree plain sky

memorial flags grass

tiger cat water grass

Input representation

sun sky waves sea

Each region is a large vector of features

- Region size
- Position
- Color

- Oriented energy (12 filters)
- Simple shape features

*Normalized-Cuts is used for segmentation.(thanks to Shi, Tal and Malik).

The process took a month.

Sample segmentation results

Tokenization

- Words in the vocabulary \rightarrow word tokens
- Image regions
 - represented by 30 features (size, position, color, texture, shape)
 - feature space is clustered for grouping the region types
 - each region \rightarrow closest region type \rightarrow blob tokens

Tokenization

plane jet su-27 sky

sun sea waves sky

grass tiger cat forest

headland grass sky

w3 w4 w5 w1 w6 w7 w8 w1

w2 w9 w10 w11

w12 w2 w1

Initialization

Initialize translation table to blob-word co-occurrences (empirical distributions of words and blobs) Rough estimate for the translation table

Expectation Maximization Algorithm

Expectation Maximization Algorithm

Expectation Maximization Algorithm

M step : (for one pair) predict translation probabilities from correspondences correspondences translation probabilities

• • • •

EM formulation

Maximize

$$p(w \mid b) = \prod_{n=1}^{N} \prod_{j=1}^{M_n} \sum_{i=1}^{L_n} p(a_{nj} = i)t(w_{nj} \mid b_{(a_{nj} = i)})$$

$$Q^{\mathsf{ML}} = \sum_{n=1}^{N} \sum_{j=1}^{M_n} \sum_{i=1}^{L_n} p(a_{nj} = i \mid w_{nj}, b_{ni}, \theta^{(\mathsf{old})})$$
$$\log \left[p(a_{nj} = i)t(w = w_{nj} \mid b = b_{(a_{nj} = i)}) \right].$$

with respect to the constraints :

$$\sum_{i} p(a_{nj} = i) = 1 \text{ and } \sum_{w^{\star}} t(w^{\star} \mid b^{\star}) = 1.$$

EM formulation

E step:

1. For each n = 1, ..., N, $j = 1, ..., M_n$ and $i = 1, ..., L_n$, compute

$$\widetilde{p}(a_{nj} = i \mid w_{nj}, b_{ni}, \theta^{(\mathsf{old})}) = p(a_{nj} = i)t(w_{nj} \mid b_{ni})$$

2. Normalize $\tilde{p}(a_{nj} = i \mid w_{nj}, b_{ni}, \theta^{(old)})$ for each image *n* and word *j*

$$p(a_{nj} = i \mid w_{nj}, b_{ni}, \theta^{(\mathsf{old})}) = \frac{\widetilde{p}(a_{nj} = i \mid w_{nj}, b_{ni}, \theta^{(\mathsf{old})})}{\sum_{i=1}^{L_n} p(a_{nj} = i)t(w_{nj} \mid b_{ni})}$$

EM formulation

M step:

1. For each different pair (b^*, w^*) appearing together in at least one of the images, compute

$$\widetilde{t}(w_{nj} = w^* \mid b_{ni} = b^*) = \sum_{n=1}^N \sum_{j=1}^{M_n} \sum_{i=1}^{L_n} p(a_{nj} = i \mid w_{nj}, b_{ni}, \theta^{(\mathsf{old})}) \delta_{(w^*, b^*)}(w_{nj}, b_{ni})$$

where $\delta_{(w^{\star},b^{\star})}(w_{nj},b_{ni})$ is 1 if b^{\star} and w^{\star} appear in image and 0 otherwise.

2. Normalize $\tilde{t}(w_{nj} = w^* | b_{ni} = b^*)$ to obtain $t(w_{nj} = w^* | b_{ni} = b^*)$.

Dictionary

horse

Word Prediction

On a new test image

- segment the image
- extract the features from the regions
- then, for each region
 - find the corresponding blob token b using the nearest neighbor method
 - use the word posterior probabilities $p(w \mid b)$ to predict words

use predicted words

- for region naming
- for auto-annotation

Region Naming

Auto-annotation

hills sky tree

mountain tree water

beach sky tree water

plane sky

sunset tree water

Measuring the performance

- Visually inspecting the images
- Using a hand-labeled data for scoring the correspondences
- Using annotation performance as a proxy

Visually inspecting the images

- Do we predict the right words ?
- are they on the right place?

Visual inspection answers both of the questions, but it is not possible to do for a large number of images

Using hand-labeled data

450 images are labeled manually, to evaluate correspondence performance subjective and error prone hard to do on a large number of images

Correspondence scores

word	num predicted	num labeled	num correct
water	459	229	92
sky	352	382	119
people	292	41	13
buildings	120	130	21
tree	430	230	65
grass	110	239	21
clouds	75	26	5
flowers	49	96	8
sea	4	3	2
windows	4	3	1

Measuring Annotation Performance

Actual keywords

grass tiger cat forest

Predicted words

cat horse grass water

Measuring Annotation Performance

Actual keywords

Predicted words Cat horse grass

water
Prediction rates using annotation as a proxy

	word	num pred.	num occur.	true pos.	false pos.	false neg.
•	water	1022	393	304	718	89
	tree	946	303	202	744	101
	sky	834	312	222	612	90
	people	785	304	194	591	110
	buildings	240	126	50	190	76
	grass	167	127	25	142	102
	clouds	160	104	39	121	65
	boats	33	69	6	27	63
	plane	49	80	11	38	69
	sun	11	43	5	6	38
	owl	7	31	2	5	29

Recall versus precision

Recall: number of correct predictions / number of actual occurrence **Precision :** number of correct predictions / number of total predictions 76 words in training set and 36 words in standard test set have nonzero values (total number of words is 153)

Measuring Annotation Performance

- Kullback-Leibler divergence between the predicted and target distributions
- Word prediction measure
- Normalized classification score

Kullback-Leibler divergence

$$E_{KL} = \sum_{w} p(w) log \frac{p(w)}{p(w \mid B)}$$

- p(w) : target distribution
- $p(w \mid B)$: predicted distribution
- B : set of blobs in the image

Kullback-Leibler divergence

set	training	standard test	novel test
001	3.5602	5.2089	5.6769
002	3.4932	4.9387	4.3696
003	3.5322	4.9982	5.4598
004	3.6355	5.3491	5.7723
005	3.5123	5.0050	5.5352
006	3.5206	5.1052	5.9007
007	3.7002	5.2544	4.3680
008	3.5643	5.1617	5.5048
009	3.6573	5.2011	4.4484
010	3.4594	4.9578	5.4725

Word prediction measure

 $E_{PR} = r/n$

- n : number of actual words in the image
- r : number of words predicted correctly
- the number of predicted words (r+w) is set to the number of actual keywords

Word prediction measure

set	training	standard test	novel test
001	0.2708	0.2171	0.2236
002	0.2799	0.2262	0.2173
003	0.2763	0.2288	0.2095
004	0.2592	0.1925	0.2172
005	0.2853	0.2370	0.2059
006	0.2776	0.2198	0.2163
007	0.2632	0.2036	0.2217
008	0.2799	0.2363	0.2102
009	0.2659	0.2223	0.2114
010	0.2815	0.2297	0.1991

Normalized classification score

$$E_{NS} = r/n - w/(N-n)$$

- N : vocabulary size
- n : number of actual words in the image
- r : number of words predicted correctly
- the number of predicted words (r+w) is set to the number of actual keywords

Normalized classification score

set	training	standard test	novel test
001	0.2560	0.2012	0.2102
002	0.2657	0.2111	0.2053
003	0.2616	0.2129	0.1968
004	0.2449	0.1771	0.2048
005	0.2713	0.2222	0.1933
006	0.2636	0.2046	0.2037
007	0.2501	0.1895	0.2097
008	0.2664	0.2220	0.1978
009	0.2527	0.2082	0.1990
010	0.2659	0.2131	0.1854

Evaluating the results

Compare the results of the proposed method with

- Empirical word densities
- Co-occurrences of words and blobs

Comparing with the empirical word densities

- Predict the most common words for all the images in the set.
- Then use the prediction rates as a baseline for evaluating the performance of the proposed method.

	KL	NS	PR
training	4.8458 - 3.5635	0.1732 - 0.2598	0.1894 - 0.2740
standard test	4.8416 - 5.1180	0.1754 - 0.2062	0.1914 - 0.2211

Comparing with the empirical word densities

Recal	Recall and precision when empirical word densities are used :					
	'water'	'sky'	'tree'	'people'		
training	1.000 - 0.217	0.993 - 0.190	0.893 - 0.208	0.366 - 0.168		
std. test	1.000 - 0.225	0.994 - 0.187	0.894 - 0.205	0.349 - 0.176		

Recall and precision when the proposed method is used :

	'water'	'sky'	'tree'	'people'
training	0.870 - 0.326	0.809 - 0.301	0.827 - 0.268	0.733 - 0.276
std. test	0.774 - 0.297	0.712 - 0.266	0.667 - 0.214	0.638 - 0.247

Comparing with co-occurrences

Use the co-occurrence of words and blobs in the data, as the translation probability table

	KL	NS	PR
training	4.0427 - 3.5635	0.2200 - 0.2598	0.2350 - 0.2740
standard test	4.5428 - 5.1180	0.2048 - 0.2062	0.2199 - 0.2211

Comparing with co-occurrences

Recall versus precision values on the standard test set:

using co-occurrences

using proposed method

Improving the system

- Refusing to predict
- Retraining on refined vocabulary
- Merging indistinguishable words

Refusing to predict

Null and fertility problems simple solution to null - refusing to predict

if $prob(word \mid blob) > threshold$ then predict the word else assign NULL

NULL prediction

Translating Images to Words: A Novel Approach for Object Recognition - p.53/84

Effect of NULL threshold

Retraining on a refined vocabulary

To refine the vocabulary

- choose a threshold,
- allow only the words which have higher prediction probabilities

	num words	KL	NS	PR
original	153	3.5602	0.2560	0.2708
> 0.0	86	3.3132	0.2820	0.2936
> 0.1	80	3.2878	0.2853	0.2966
> 0.2	65	3.1968	0.2950	0.3054
> 0.3	41	2.9685	0.3235	0.3320

Retraining on a refined vocabulary

Prediction probabilities :

word	org	> 0.0	> 0.1	> 0.2	> 0.3
grass	0.241	0.303	0.306	0.341	0.400
water	0.545	0.653	0.657	0.701	0.836
sun	0.321	0.396	0.400	0.443	0.479
sky	0.408	0.492	0.500	0.522	0.578
plane	0.300	0.358	0.362	0.392	0.350
texture	0.222	0.302	0.302	0.314	0.392
nest	0.590	0.619	0.621	0.633	0.679
fish	0.270	0.318	0.320	0.406	0.476
church	0.155	0.180	0.191	0.000	0.000

Retraining on a refined vocabulary

Recall and precision values :

word	org	> 0.0	> 0.1	> 0.2	> 0.3
grass	0.407-0.134	0.442-0.138	0.451-0.138	0.484-0.139	0.475-0.145
water	0.884-0.289	0.875-0.294	0.875-0.295	0.885-0.294	0.902-0.304
sun	0.184-0.327	0.184-0.327	0.184-0.327	0.184-0.333	0.184-0.348
sky	0.801-0.253	0.793-0.259	0.788-0.261	0.786-0.265	0.797-0.270
plane	0.191-0.142	0.191-0.144	0.216-0.141	0.266-0.134	0.203-0.134
texture	0.363-0.128	0.363-0.130	0.363-0.130	0.363-0.131	0.403-0.133
nest	0.052-0.375	0.052-0.375	0.052-0.375	0.052-0.429	0.052-0.500
fish	0.374-0.098	0.441-0.102	0.441-0.102	0.380-0.102	0.346-0.114
church	0.075-0.080	0.075-0.080	0.075-0.080	0.000-0.000	0.000-0.000

Some words cannot be set apart

- either they are synonyms (e.g. locomotive and train)
- or they are indistinguishable using the current feature set (e.g. eagle and jet)

construct a similarity matrix based on the posterior probabilities $p(b \mid w)$ then, use a graph cut algorithm for clustering

Translating Images to Words: A Novel Approach for Object Recognition - p.59/84

	original	merged
NS - standard test	0.2012	0.2242
PR - standard test	0.2171	0.2395
NS - training	0.2708	0.2490
PR - training	0.2560	0.2616

Recall and precision values:

water	0.870 - 0.326	beach - water	0.988 - 0.333
beach	0.025 - 0.047		
coral	0.000 - 0.000	coral - ocean	0.086 - 0.120
ocean	0.077 - 0.173		
jet	0.107 - 0.189	jet plane waves	0.303 - 0.199
plane	0.137 - 0.224		
waves	0.000 - 0.000		
plants	0.026 - 0.067	leaves plants	0.125 - 0.125
leaves	0.000 - 0.000		
boats	0.087 - 0.181	boats buildings	0.482 - 0.255
buildings	0.397 - 0.208		

a small amount of supervised data can be helpful

- for breaking symmetries
- for a better clustering

A set of regions are labeled manually 6 CDs, 10 images from each

- eagles
- elephants
- tigers
- horses
- planes
- lions

21 label words + outlier = 22 labeled classes apply linear discriminant analysis

set the alignments between the labeled regions and the corresponding words to 1, and the others to 0

4 methods can be applied :

method	clustering	training
method 1	k-means	unsupervised data + EM
method 2	labeled data	unsupervised data + EM
method 3	labeled data	nearest neigbor classifier
method 4	labeled data	supervised data + EM

-grass--tiger--water-

lab	bel	method 1	method 2	method 4
tige	er	elephant horses field	tiger null water	tiger null water
plai	ne	sky plane forest	plane sky null	plane null sky
run	way	null sky eagle	runway plane eagle	runway plane eagle
field	d	plane null sky	null horses field	field null elephant
hor	ses	tiger null forest	null tiger tree	horses null tiger
sky	,	forest sky tiger	sky eagle null	sky null eagle
elep	phant	sky null grass	tree elephant null	elephant null tree
gra	SS	horses null plane	grass horses null	grass horses field
tree	9	plane sky runway	elephant horses null	tree field horses
wat	er	tiger plane water	water null sky	water null sky
lion	1	tiger null plane	grass lion tiger	lion grass tiger

False positive and false negative rates :

word	supervised	nearest neighbor
eagle	0.0000-1.0000	0.8487-0.6714
forest	0.0000-1.0000	0.9524-0.9048
grass	0.7736-0.6364	0.7807-0.3788
horses	0.8231-0.6286	0.8496-0.7571
lion	0.7520-0.5714	0.7582-0.6857
rocks	0.0000-1.0000	0.9884-0.9091
runway	0.7647-0.4286	0.7647-0.4286
sky	0.6630-0.7207	0.6813-0.4775
tree	0.8667-0.5135	0.9355-0.8378
water	0.8033-0.6620	0.8047-0.5352

Conclusions

We proposed a new approach to object recognition

- motivated by the available annotated image collections,
- inspired from machine translation.

The proposed method

- can learn correspondences between image regions and words,
- is unsupervised using the available large data sets efficiently,
- can be used for object recognition at a broad scale;
 - region naming: predict words corresponding to particular regions,
 - auto-annotation: predict words associated aith whole images.

Conclusions

The system is applied on the Corel data set and its performance is evaluated. The words predicted by the system is measured using:

- a set of hand-labelled images,
- annotation as a proxy.

The sytem performance is compared against

- empirical word densities,
- co-occurrences of blobs and regions.

Discussion and future directions

The proposed method has

- problems due to annotations;
 - NULL and fertility,
 - compound words,
- problem due to the image;
 - segmentation,
 - feature extraction,
 - clustering.
Future Directions - Propose merging

propose merging

Other available data sets

Corel Image Data	40,000 images
Fine Arts Museum of San Francisco	83,000 images
Cal-flora	20,000 images
News photos with captions	1,500 images per day
Hulton-Getty collection	40,000,000 images
TV news archives	several terabytes
Google Image Crawl	> 330,000,000 images

Thanks for listening!

Sample images with annotations

water harbor sky clouds

plane jet su-27 sky

garden building flowers trees

diver fish ocean

garden flowers house trees

zebra grass herd planes

flo

Problems in Object Recognition

what is an object?

how to model?

scalability

Tokenization

cat cougar hills rock

church mountain tree

fish reefs water

gardens house tree

mountain tree water

coast helicopter water

Merging indistinguishable words

