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Large volumes of video
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http://www.youtube.com/yt/press/statistics.html

 For YouTube alone

 More than 1 billion unique user visits each month

 Over 6 billion hours of video are watched each month

 100 hours of video are uploaded every minute
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Applications
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Available Datasets
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Dataset #Classes

KTH 6 

Weizmann 9 

IXMAS 11 

Hollywood 8 

UCF Sports 9 

Hollywood2 12 

UCF YouTube 11 

MSR 3 

Olympic 16 

UCF50 50 

HMDB51 51 

http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/

Yahoo! Recently released 100 million Flick data 
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Recent datasets
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Yahoo! Flickr

100M dataset

418.507 labeled video

Veri Kümesi #Sınıf #Video

UCF-101                  101 13320

ActivityNet 200 20000

FCVID 239 91223 

Sports-1M               487 1M
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Videos in the wild

 Unrestricted type of events with various activities 
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Harlem Shake : http://www.youtube.com/watch?v=4hpEnLtqUDg

http://www.youtube.com/watch?v=4hpEnLtqUDg
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Our attempts

 Videos as sequence of frames 

 Detect concepts in each frame

 Utilize image search engines 

 Discover important knowledge from videos itself

 Discriminate parts

 Understand actions in videos 

 Simple but effective descriptors
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Utilizing large volumes of 

weakly labeled images
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Utilize image search results
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Query : Ankara
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Single Dominant Category
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Query : Turing
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Google results
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E.Golge, P.Duygulu. FAME: Face Association Through Model Evolution. In CVPR Workshops, 2015
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Naming faces

Among the faces 

associated with a 

name find the 

correct subset : 

The most similar 

subset of faces
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Ozkan, D., Duygulu, P., ”Interesting Faces: A Graph Based Approach for Finding People in News”, Pattern Recognition, 2010

Ozkan, D., Duygulu, P., ”A Graph Based Approach for Naming Faces in News Photos”, CVPR, 2006

Ozkan, D., Duygulu, P., ”Finding People Frequently Appearing in News”, CIVR, 2006
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Finding Densest component
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(Charikar, 2000)Node with the minimal degree is removed at each iteration
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Image Re-ranking
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Zitouni, H., Sevil, S. G., Ozkan, D., Duygulu, P., “Re-ranking of Image Search Results using a Graph Algorithm”, ICPR 2008
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Multiple meanings/variations
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The concepts are observed in different forms requiring grouping and 

irrelevant elements to be eliminated.
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CMAP for Concept Learning 
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Golge, E., Duygulu, P., “Concept Maps: Mining Noisy Web Data for Concept Learning ”, accepted to ECCV 2014
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Color and Texture Attributes
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Scene Concepts
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Attribute and Scene Learning
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Attribute learning for object recognition Attribute based scene recognition

Learning scene concepts directly

[17] Quattoni and Torralba,”Recognizing Indoor Scenes”. 2009

[11]  Lazebnik, Schmid, Ponce, “Beyond Bags of features: Spatial pyramid matching for recognizing natural scene categories”, CVPR 2006

[22]  Van de Weijer, Schmid, Verbeek, Larlus, “Learning Color Names for Real-world Applications”, 2009

On ImageNet: 37.4% (RSOM), 36.8% (Russakovsky & Fei-Fei, 2012)
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Comparison with other clustering methods
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Objects
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Faces
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FAME: Face Association Through Model Evolution
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Capture usualness in 

unusual videos 

Pinar Duygulu, November 2016, 

Ankara
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Boiman and Irani

ICCV 2005

Roshtkhari and Levine, CVPR 2013

Ito, Kitani, Bagnell, Hebert, 2012 Zhao, Fei-Fei, Xing, 

CVPR 2011
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Usual versus unusual

Pinar Duygulu, November 2016, Ankara



+

Pinar Duygulu, November 2016, Ankara

Usual versus unusual
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Rapid motions
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Fast speed

Large spatial extension
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Trajectory Snippet Histograms
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Representation

Velocity and spatial extension of the motion
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Classification
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People Falling Funny videos

Best SH: people falling 75%, funny videos76.25%

HOG3D : people falling 65%, funny videos 73.75%
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Failure cases
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Limitations
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Finding discriminative 

parts in videos

Pinar Duygulu, November 2016, 
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Weakly labeled videos
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Birthday event
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Mum üfleme



+
Finding discriminative parts

Singh ECCV 2012 Jain CVPR 2013
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AME
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Input Video

CNN FC-6 

Layer 

Features

Classification

AlexNet 3D ConvNets[8,9,10] [11,12]
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Example of successful eliminated instances by AME[1] for ActivityNet action classes.(1) 

"Archery" class. Baseline: 31.57%, AME: 44.73%. (2) "Checking tires" class. Baseline: 

26.82%, AME: 41.46%. (3) "Platform diving" class. Baseline: 56.66%, AME: 73.33%
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Example of unsuccessful eliminated instances for ActivityNet  class "Windsurfing" with 

AME[1]. Baseline: 74.07%, AME[1]: 66.66%
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Prototypes
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Human Activity Analysis

Pinar Duygulu, November 2016, 

Ankara
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What do these people do?

 Pose tells a lot about the actions.

 How can we describe the pose?

running walking throwing crouching
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Pose as a Collection of Rectangles

 Human body is composed of cylindrical parts. 

 The projection of a cylinder on 2D is a rectangle. 

 Body can be thought as a collection of rectangular regions

 We can represent the pose based on the orientation of 
these rectangles

Ikizler, N. Duygulu, P. ”Human Action Recognition Using Distribution of Oriented Rectanguar Patches”, Proc. 2nd Workshop on Human 

Motion: Understanding, Modeling, Capture and Animation, In conjunction with ICCV2007

Ikizler, N. ve Duygulu P., ”Histogram of Oriented Rectangles: A New Pose descriptor for Human Action Recognition”, Image and Vision 

Computing, volume 27, Issue 10, pages 1515-1526, September 2009

Pinar Duygulu, November 2016, Ankara



+Histogram of Oriented Rectangles (HOR)

Rectangular regions are extracted over silhouettes 

using convolution of a zero-padded rectangular 2D 

Gaussian on different orientations and scales

 12 angles 15° apart
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 Use snippets of frames and form histogram of oriented rectangles 
over a window (HORW)
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Classification
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Action Recognition in Still Images

 Pose estimation by Ramanan’s method

 Form Circular HORs (CHORs) 

 Classification based on LDA+SVM
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Ikizler, N., Cinbis, R. G., Pehlivan, S., Duygulu, P., ”Recognizing actions from still images”,Proc. 19th International Conference on Pattern 

Recognition (ICPR 2008)



+Still Image Results

Correctly 

classified 

action images

running

walking

throwing

catching

crouching

kicking

ActionWeb dataset -

467 images collected 

from the web
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Boundary-fitted Lines

 In the absence of silhouettes, we can use lines fitted to 

the boundaries (Pb) (Martin PAMI2004) of human figures

fine detail

coarse shape
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..and Optical Flow

 Dense block-based optical flow calculation

 L1 block distance

 5x5 template size with a window size of 3
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Recognition with LHist and OFHist

Ikizler, N., Cinbis, R. G., Duygulu, P., ”Human action recognition with line and flow histograms”, Proc. 19th International Conference on 

Pattern Recognition (ICPR 2008),Pinar Duygulu, November 2016, Ankara
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Pose as line segments

Pinar Duygulu, November 2016, AnkaraBaysal, S., Duygulu, P., ”A Line Based Pose Representation For Human Action Recognition”, Signal Processing: Image Communication, 

Volume 28, Issue 5, Pages 458-471, May 2013
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Line pairs
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Multiple camera views
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Oriented cylinders
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Pehlivan, S., . Duygulu, P. ”3D Human Pose Search using Oriented Cylinders”, IEEE Workshop on Search in 3D and Video (S3DV), in 

conjunction with ICCV 2009
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Projections as circles
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Pehlivan, S., Duygulu, P., ”A new pose-based representation for recognizing actions from multiple cameras”, Computer Vision and Image 

Understanding, volume 115, number 2, pages 140-151, February 2011
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Assistive systems for 

Patient and Elderly care

Pinar Duygulu, November 2016, 

Ankara
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Cooking Activities:

High Intra-class Variance
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Iscen, A., Armagan, A., Duygulu, P., ”Knives are picked before slices are cut: Recognition through Activity Analysis”, Workshop on 

Cooking and Eating Activities, in conjunction with ACM Multimedia 2013.
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Low Inter-class Variance
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Cut apart, cut ends. cut slices, cut stripes, cut dice
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Solution
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Put in Pan or Put in Bowl?

P(“put in bowl” | “cut dice”) > 

P(“put in pan” | “cut dice”) 

P(“put in pan” | “spread”) > 

P(“put in bowl” | “spread”) 
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Medical Device Use
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Iscen, A., Duygulu, P., ”Snippet Histograms for Assistive Technologies”, Workshop on Assistive computer Vision and Robotics, in 

conjunction with ECCV 2014.
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Asthma Inhaler
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Breathe out slowly

Hold your breath for 10 seconds

Breathe in and push down the button at the 
same time

Put the inhaler about 2 inches in front of your 
mouth 

Breathe out

Shake the inhaler (for 5 second)
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Infusion Pump
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