Authentication Systems

Ahmet Burak Can
Hacettepe University

abc@hacettepe.edu.tr

Entity Authentication

- Entity authentication (identification): the process whereby one party is assured of the identity of a second party involved in a protocol.
- Entities can be people, processes, etc.

- Authentication can be done in many ways :)
https://youtu.be/Il6Ci-fkFtA

Entity Authentication

- Non-cryptographic
- Address-based (E-mail, IP, etc.)
- Passwords
- Biometrics
- Cryptographic
- Symmetric key
- Public key

Requirements of Authentication Protocols

- Requirements of identification protocols
- for honest prover A and verifier B, A is able to convince B
- no other party can convince B
- in particular, B cannot convince C that it is A
- Authentication can be based on
- What you know? (password schemes)
- What you have? (keys, smart cards, etc.)
- What you are? (fingerprints, retinal scans, etc.)
- Kinds of attackers
- passive and replay
- active, man in the middle
- the verifier

Properties of Authentication Protocols

- Reciprocity of identification (one-way or mutual)
- Computational efficiency (encryption, signing)
- Communication efficiency (communication rounds, messages)
- Involvement of a third party
- Nature of trust in the third party
- Storage of secrets

Authentication Using Fixed Passwords

- Client authenticates to a server using a password.
- Passwords must be kept in encrypted password files or as digests

Initial Password Distribution

- Initial off-line authentication
- Passwords can be chosen on site by users
- An initial password can be issued by the system administrator.
- Pre-expired passwords
- Must be changed at the first login

Attacks on Passwords

- Attacks:
- Careless users writing down passwords
- Stealing password files
- Eavesdropping
- On-line password guessing
- Off-line guessing attacks
- Dictionary attacks
- Exhaustive search

Eavesdropping

- Watching the screen
- Watching the keyboard
- Login Trojan horses
- Different appearance
- Interrupt command for login
- Keyboard sniffers
- Good system administration
- Network sniffers
- Cryptographic protection
- One-time passwords

On-line Password Guessing

- Careless choices (first names, initials, etc.); poor initial passwords
- Defenses: After wrong guesses,
- Lock the account
- Not desirable, can be used for DoS
- Slow down
- Alert users about unsuccessful login attempts
- Don't allow short or guessable passwords

Off-line Password Guessing

- Stealing \& using password files
- Passwords should not be stored in clear.Typically, they're hashed and stored.
- Attacks:
- Exhaustive search
- Dictionary attacks
- Defenses:
- Don't allow short/guessable passwords
- Don't make password files readable
- Salting: Mix a random number to each hash

Unix crypt Algorithm

- Used to store Unix passwords
- UNIX password information stored is in /etc/passwd :
- Iterated DES encryption of 0 (64 bits), using the first 8 characters of the password as key
- I2 bit random salt taken from the system clock time at the password creation
- Strengthen passwords by "salting".
- Why use the salt?: To alter the expansion function E of DES, to defend against attacks on DES using off-the-shelf hardware that can crack DES

One-Time Passwords

- Some systems use a different password for each login operations.
- A used password expires and then a new password is created for the next login.
- Example:

SMS messages sent to cell phone during online banking logins

- Generally, one-time passwords are created using crptograhic algorithms
- Sometimes a secure device is used for creating one-time passwords

Lamport's One-Time Password

- Stronger authentication that password-based
- One-time setup:
- A selects a value w, a hash function $H()$, and an integer t, computes $w_{0}=H^{t}(w)$ and sends w_{0} to B B stores w_{0}
- Protocol: to identify to B for the i^{th} time, $\mathrm{I} \leq \mathrm{i} \leq \mathrm{t}$
- A sends to $B: A, i, w_{i}=H^{t-i}(w)$
- B checks $i=i_{A}, H\left(w_{i}\right)=w_{i-1}$
- if both holds, $i_{A}=i_{A}+I$

Challenge-Response Protocols

- Goal: one entity authenticates to other entity by proving the knowledge of a secret, not by revealing the secret
- Time-variant parameters used to prevent replay attacks, provide uniqueness and timeliness: nonce (number used only once)
- Three types of challenges:
- Random numbers
- Sequences
- Timestamp

Authentication Tokens

- Keys (physical)
- ATM, credit cards, smart cards
- USB Tokens

Smart Cards

- Smart cards: On-card processor for cryptographic authentication.
- PIN-protected cards: Memory protected by PIN
- Challenge-response cards: Performs challenge-response authentication through SC reader
- New technology:Tokens working through USB ports.

USB Tokens

- Challenge Response Tokens
- May use public key certificates
- Cryptographic calculator
- Generally used for one-time password protocols
- Current time encrypted
- Displayed to user
- Entered to terminal

Biometrics

- Authentication by inherent physical characteristics
- E.g., fingerprint readers, retina/iris scanners, face recognition, voice recognition

Problems with Biometrics

- Expensive
- Generally the recognition devices are expensive or hard to deploy
- Not fault tolerant
- Face, voice recognition is still not stable enough
- Not possible to change in case of theft
- If stealed, it is not possible to change a user's biometric info unlike passwords, tokens.
- Such as steal of fingerprints on the surface of scanner devices and replication of the fingerprint using latex material
- Can be replayed in remote authentication
- If biometric info is stealed, it can be used by attackers

