

Authentication Systems

Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr

Entity Authentication

• Entity authentication (identification): the process whereby one party is assured of the identity of a second party involved in a protocol.

- Entities can be people, processes, etc.
- Authentication can be done in many ways ⁽ⁱ⁾

https://youtu.be/II6Ci-fkFtA

Entity Authentication

- Non-cryptographic
 - Address-based (E-mail, IP, etc.)
 - Passwords
 - Biometrics
- Cryptographic
 - Symmetric key
 - Public key

Requirements of Authentication Protocols

- Requirements of identification protocols
 - for honest prover A and verifier B, A is able to convince B
 - $^\circ~$ no other party can convince B
 - in particular, B cannot convince C that it is A
- Authentication can be based on
 - What you know? (password schemes)
 - What you have? (keys, smart cards, etc.)
 - What you are? (fingerprints, retinal scans, etc.)
- Kinds of attackers
 - passive and replay
 - active, man in the middle
 - the verifier

Properties of Authentication Protocols

- Reciprocity of identification (one-way or mutual)
- Computational efficiency (encryption, signing)
- Communication efficiency (communication rounds, messages)
- Involvement of a third party
- Nature of trust in the third party
- Storage of secrets

Authentication Using Fixed Passwords

- Client authenticates to a server using a password.
 - Passwords must be kept in encrypted password files or as digests

Initial Password Distribution

- Initial off-line authentication
- Passwords can be chosen on site by users
- An initial password can be issued by the system administrator.
- Pre-expired passwords
 - Must be changed at the first login

Attacks on Passwords

- Attacks:
 - Careless users writing down passwords
 - Stealing password files
 - Eavesdropping
 - On-line password guessing
 - Off-line guessing attacks
 - Dictionary attacks
 - Exhaustive search

Eavesdropping

- Watching the screen
- Watching the keyboard
- Login Trojan horses
 - Different appearance
 - Interrupt command for login
- Keyboard sniffers
 - Good system administration
- Network sniffers
 - Cryptographic protection
 - One-time passwords

On-line Password Guessing

- Careless choices (first names, initials, etc.); poor initial passwords
- Defenses: After wrong guesses,
 - Lock the account
 - Not desirable, can be used for DoS
 - Slow down
 - Alert users about unsuccessful login attempts
 - Don't allow short or guessable passwords

Off-line Password Guessing

- Stealing & using password files
- Passwords should not be stored in clear. Typically, they're hashed and stored.
- Attacks:
 - Exhaustive search
 - Dictionary attacks
- Defenses:
 - Don't allow short/guessable passwords
 - Don't make password files readable
 - Salting: Mix a random number to each hash

Unix crypt Algorithm

- Used to store Unix passwords
- UNIX password information stored is in /etc/passwd :
 - Iterated DES encryption of 0 (64 bits), using the first 8 characters of the password as key
 - 12 bit random salt taken from the system clock time at the password creation
- Strengthen passwords by "salting".
 - Why use the salt?: To alter the expansion function E of DES, to defend against attacks on DES using off-the-shelf hardware that can crack DES

One-Time Passwords

- Some systems use a different password for each login operations.
 - A used password expires and then a new password is created for the next login.
 - Example:
 SMS messages sent to cell phone during online banking logins
- Generally, one-time passwords are created using crptograhic algorithms
 - Sometimes a secure device is used for creating one-time passwords

Lamport's One-Time Password

- Stronger authentication that password-based
- One-time setup:
 - A selects a value w, a hash function H(), and an integer t, computes $w_0 = H^t(w)$ and sends w_0 to B
 - \circ B stores w₀
- Protocol: to identify to B for the ith time, $I \leq i \leq t$
 - A sends to B: A, i, $w_i = H^{t-i}(w)$
 - B checks $i = i_A, H(w_i) = w_{i-1}$
 - if both holds, $i_A = i_A + I$

Challenge-Response Protocols

- Goal: one entity authenticates to other entity by proving the knowledge of a secret, not by revealing the secret
- Time-variant parameters used to prevent replay attacks, provide uniqueness and timeliness: nonce (number used only once)
- Three types of challenges:
 - Random numbers
 - Sequences
 - Timestamp

Authentication Tokens

- Keys (physical)
- ATM, credit cards, smart cards
- USB Tokens

Smart Cards

- Smart cards: On-card processor for cryptographic authentication.
 - PIN-protected cards: Memory protected by PIN
 - Challenge-response cards: Performs challenge-response authentication through SC reader
 - New technology: Tokens working through USB ports.

USB Tokens

- Challenge Response Tokens
 - May use public key certificates

• Cryptographic calculator

- Generally used for one-time password protocols
- Current time encrypted
- Displayed to user
- Entered to terminal

Biometrics

- Authentication by inherent physical characteristics
- E.g., fingerprint readers, retina/iris scanners, face recognition, voice recognition

Problems with Biometrics

- Expensive
 - Generally the recognition devices are expensive or hard to deploy
- Not fault tolerant
 - Face, voice recognition is still not stable enough
- Not possible to change in case of theft
 - If stealed, it is not possible to change a user's biometric info unlike passwords, tokens.
 - Such as steal of fingerprints on the surface of scanner devices and replication of the fingerprint using latex material
- Can be replayed in remote authentication
 - If biometric info is stealed, it can be used by attackers