Basic Ciphers

Information Security

Ahmet Burak Can
Hacettepe University
abc@hacettepe.edu.tr

- Computer Security:

Ensure security of data kept on the computer

- Network Security:

Ensure security of communication over insecure medium

- Approaches to Secure Communication
- Steganography
hides the existence of a message
- Cryptography
hide the meaning of a message

Steganography Sample

- Least significant bit values of pixels can be used to hide a secret message
- Below images seem to be same but right picture store 5 Shakespeare games.
 AVE SITUATION AFFECTING INTERNATIONAL LAW. STATEMENT FORESHADOWS RUIN OF MANY NEUTRALS.YELLOW JOURNALS UNIFYING NATIONAL EXCITEMENT IMMENSELY.
- Take the first letters of the message: PERSHINGSAILSFROMNYJUNEI
- When you parse it, you will get the real message:

Text Steganography Sample

- The message:

PRESIDENT'S EMBARGO RULING SHOULD HAVE IMMEDIATE NOTICE.

PERSHING SAILS FROM NY JUNE I

Basic Terminology in Cryptography - I

- Cryptography: the study of mathematical techniques related to aspects of providing information security services.
- Cryptanalysis: the study of mathematical techniques for attempting to defeat information security services.
- Cryptology: the study of cryptography and cryptanalysis.

Basic Terminology in Cryptography - 2

- Encryption (encipherment): the process of transforming information (plaintext) using an algorithm (cipher) to make it unreadable to anyone except those possessing special knowledge
- Decryption (decipherment): the process of making the encrypted information readable again
- Key: the special knowledge shared between communicating parties
- Plaintext: the data to be concealed.
- Ciphertext: the result of encryption on the plaintext

Breaking Ciphers - I

- There are different methods of breaking a cipher, depending on:
the type of information available to the attacker
the interaction with the cipher machine
the computational power available to the attacker

Breaking Ciphers - 2

- Ciphertext-only attack: The cryptanalyst knows only the ciphertext. Sometimes the language of the plaintext is also known.
- The goal is to find the plaintext and the key.
- Any encryption scheme vulnerable to this type of attack is considered to be completely insecure.
- Known-plaintext attack: The cryptanalyst knows one or several pairs of ciphertext and the corresponding plaintext.

The goal is to find the key used to encrypt these messages or a way to decrypt any new messages that use that key.

Today's Ciphers

- Shift Cipher
- Transposition Cipher
- Mono-alphabetical Substitution Cipher
- Polyalphabetic Substitution Ciphers
- Rotor Machine
- Enigma

Breaking Ciphers - 3

- Chosen-plaintext attack : The cryptanalyst can choose a number of messages and obtain the ciphertexts for them

The goal is to deduce the key used in the other encrypted messages or decrypt any new messages using that key.

- Chosen-ciphertext attack: Similar to the chosenplaintext attack, but the cryptanalyst can choose a number of ciphertexts and obtain the plaintexts.

Shift Cipher

- A substitution cipher
- The Key Space:
- [1..25]
- Encryption given a key K:
- each letter in the plaintext P is replaced with the K 'th letter following corresponding number (shift right)
- Decryption given K:
shift left
- History: $\mathrm{K}=3$, Caesar's cipher

Shift Cipher:An Example

ABCDEFGHIJ K L M N O P Q R S T U V WX Y Z
012345678910111213141516171819202122232425
$P=$ CRYPTOGRAPHYISFUN
$K=1 I$
$C=$ NCJAVZRCLASJTDQFY
$\mathrm{C} \rightarrow 2 \quad 2+11 \bmod 26=13 \rightarrow \mathrm{~N}$
$R \rightarrow I 7 \quad|7+1| \bmod 26=2 \rightarrow C$
$N \rightarrow 13 \quad|3+| | \bmod 26=24 \rightarrow Y$

Transposition Cipher

- Write the plaintext horizontally in fixed number columns and read vertically to encypt.

The ancient Spartans used a form of transposition cipher

- Example:
$\mathrm{P}=$ = 'meet me near the clock tower at twelve midnight tonite
m e etm
n
near

werat
twelv
emidn

C='metowteioenhcewmgneeekreihitactaldttmrlotvnte'

Shift Cipher: Cryptanalysis

- Can an attacker find K?
- YES: exhaustive search,
- key space is small (<= 26 possible keys)
- the attacker can search all the key space in very short time
- Once K is found, very easy to decrypt

Transposition Cipher: Cryptanalysis

- Can an attacker decrypt a transposed text?

Do exhaustive search on number of columns

- Since the key space is small, the attacker can search all the key space in very short time
- Once the number of columns is guessed, very easy to decrypt

General Mono-alphabetical Substitution

 Cipher- The key space: all permutations of $\Sigma=\{A, B, C, \ldots, Z\}$
- Encryption given a key п:
each letter X in the plaintext P is replaced with $\pi(X)$
- Decryption given a key π :
each letter Y in the ciphertext P is replaced with $\pi^{-1}(Y)$

Example:
ABCDEFGHIJKLMNOPQRSTUVWXYZ п=BADCZHWYGOQXSVTRNMLKJIPFEU

BECAUSE \rightarrow AZDBJLZ

Cryptanalysis of Substitution Ciphers:

Frequency Analysis

- Basic ideas:

Each language has certain features: frequency of letters, or of groups of two or more letters.

- Substitution ciphers preserve the language features.

Substitution ciphers are vulnerable to frequency analysis attacks.

- History of frequency analysis:

Earliest known description of frequency analysis is in a book by the ninth-century scientist al-Kindi
Rediscovered or introduced from the Arabs in the Europe during the Renaissance

General Substitution Cipher: Cryptanalysis

- Exhaustive search is infeasible
- for the letter A, there are 26 probabilities
- for the letter B, there are 25 probabilities
- for the letter C, there are 24 probabilities
... and so on
- Key space size is $26!\approx 4^{*} 10^{26}$

Frequency Features of English

- Vowels, which constitute 40% of plaintext, are often separated by consonants.
- Letter A is often found in the beginning of a word or second from last.
- Letter I is often third from the end of a word.
- Letter Q is followed only by U
- Some words are more frequent, such as the, and, at, is, on, in

Cryptanalysis using Frequency Analysis

- The number of different ciphertext characters or combinations are counted to determine the frequency of usage.
- The cipher text is examined for patterns, repeated series, and common combinations.
- Replace ciphertext characters with possible plaintext equivalents using known language characteristics.
- Frequency analysis made substitution cipher insecure

Summary

- Shift ciphers are easy to break using brute force attacks, they have small key space.
- Substitution ciphers preserve language features and are vulnerable to frequency analysis attacks.

Improve the Security of Substitution Cipher

- Using nulls
e.g., using numbers from I to 99 as the ciphertext alphabet, some numbers representing nothing are inserted randomly
- Deliberately misspell words
e.g.,"Thys haz thi ifekkt off diztaughting thi ballans off frikwenseas"
- Homophonic substitution cipher
each letter is replaced by a variety of substitutes
- These make frequency analysis more difficult, but not impossible

Polyalphabetic Substitution Ciphers

- Main weaknesses of monoalphabetic substitution ciphers
- each letter in the ciphertext corresponds to only one letter in the plaintext letter
- Idea for a stronger cipher (1460's by Alberti)
- use more than one cipher alphabet, and switch between them when encrypting different letters
Developed into a practical cipher by Vigenère (published in 1586)

The Vigenère Cipher

Security of Vigenère Cipher

- Definition:

Given m, a positive integer, $P=C=\left(Z_{26}\right)^{n}$, and $K=\left(k_{1}, k_{2}, \ldots, k_{m}\right)$ a key, we define:

- Encryption:

- $E_{k}\left(P_{1}, P_{2} \ldots p_{m}\right)=\left(p_{1}+k_{1}, p_{2}+k_{2} \ldots p_{m}+k_{m}\right)(\bmod 26)$
- Decryption:
$D_{k}\left(c_{1}, c_{2} \ldots c_{m}\right)=\left(c_{1}-k_{l}, c_{2}-k_{2} \ldots c_{m}-k_{m}\right)(\bmod 26)$

Example:

Plaintext: \quad C R Y P T O GRAPH Y
Key: LUCKLUCKLUCK
Ciphertext: NLAZEI I B L J J I

Vigenere Cipher: Cryptanalysis

- Find the length of the key.
- Divide the message into that many shift cipher encryptions. Use frequency analysis to solve the resulting shift ciphers.
- Vigenère cipher is vulnerable: once the key length is found, a cryptanalyst can apply frequency analysis.
- How to Find the Key Length?
- For Vigenere, as the length of the keyword increases, the letter frequency shows less English-like characteristics and becomes more random.
- Two methods to find the key length:

Kasisky test

Index of coincidence (Friedman)

- Vigenere masks the frequency with which a character appears in a language: one letter in the ciphertext corresponds to multiple letters in the plaintext. Makes the use of frequency analysis more difficult.
- Any message encrypted by a Vigenere cipher is a collection of as many shift ciphers as there are letters in the key.

Kasisky Test

- Two identical segments of plaintext will be encrypted to the same ciphertext, if the they occur in the text at the distance $\Delta,(\Delta \equiv 0(\bmod m), m$ is the key length $)$.
- Algorithm:

Search for pairs of identical segments of length at least 3
Record distances between the two segments: $\Delta I, \Delta 2, \ldots$

- m divides $\operatorname{gcd}(\Delta 1, \Delta 2, \ldots)$

PT THESUNANDTHEMANINTHEMOON
Key KINGKINGKINGKINGKINGKING
CT DPRYEVNTNBUKWIAOXBUKWWBT

Rotor Machines-I

- Basic idea: if the key in Vigenere cipher is very long, then the attacks won't work
- Implementation idea: multiple rounds of substitution
- A machine consists of multiple cylinders
each cylinder has 26 states, at each state it is a substitution cipher: the wiring between the contacts implements a fixed substitution of letters
each cylinder rotates to change states according to different schedule changing the substitution

Enigma Machine

- Patented by Scherius in 1918

Came on the market in 1923, weighted 50 kg (about 1 ll lbs), later cut down to 12 kg (about 26 lbs)

- It cost about \$30,000 in today's prices
$34 \times 28 \times 15 \mathrm{~cm}$
- Widely used by the Germans from 1926 to the end of second world war
- First successfully broken by Polish in the thirties by exploiting the repeating of the message key and knowledge of the machine design)
- During theWW II, Enigma was broken by Alan Turing (19121954) in the UK intelligence. He was an english mathematician, logician and cryptographer, father of modern computer science.

Rotor Machines-2

- A m-cylinder rotor machine has 26^{m} different substitution ciphers
- $26^{3}=17576$
- $26^{4}=456,976$
$26^{5}=11,881,376$

Enigma

- Use 3 scramblers (rotors): 17576 substitutions
- 3 scramblers can be used in any order: 6 combinations
- Plug board: allowed 6 pairs of letters to be swapped before the scramblers process started and after it ended.
- Total number of keys $\approx 10^{16}$
- Later versions use 5 rotors and 10 pairs of letters

Information Security

Key Mapping

- A reflector enables to map a character twice with each rotor
- First rotor rotates after each key press
- Second rotor rotates after first had a complete revolution,
- and so on

Intormation Securiy

Encrypting with Enigma

- Machine was designed under the assumption that the adversary may get access to the machine
- Daily key: The settings for the rotors and plug boards changed daily according to a codebook received by all operators
- A day key has the form

Plugboard setting:A/L-P/R-T/D-B/W-K/F-O/Y
Scrambler arrangement: 2-3-1
Scrambler starting position: Q-C-W

- Message key: Each message was encrypted with a unique key defined by the position of the 3 rotors

How to Break the Enigma Machine?

- Recover 3 secrets
- Internal connections for the 3 rotors
- Daily keys
- Message keys
- With 2 months of day keys and Enigma usage instructions, the Polish mathematician Rejewski succeeded to reconstruct the internal wiring

Lessons Learned From Breaking Enigma

- Keeping a machine (i.e., a cipher algorithm) secret does not help
- The Kerckhoff's principle
- Security through obscurity doesn't work
- Large number of keys are not sufficient
- Known plaintext attack was easy to mount
- Key management was the weakest link
- People were also the weakest link
- Even a strong cipher, when used incorrectly, can be broken

Kerckhoffs's Principle

- Auguste Kerckhoff (1835-1903) was a Dutch linguist and cryptographer who was professor of languages at the School of Higher Commercial Studies in Paris in the late 19th century.
- The security of a protocol should rely only on the secrecy of the keys, protocol designs should be made public (I883)
secrecy of a protocol does not work

