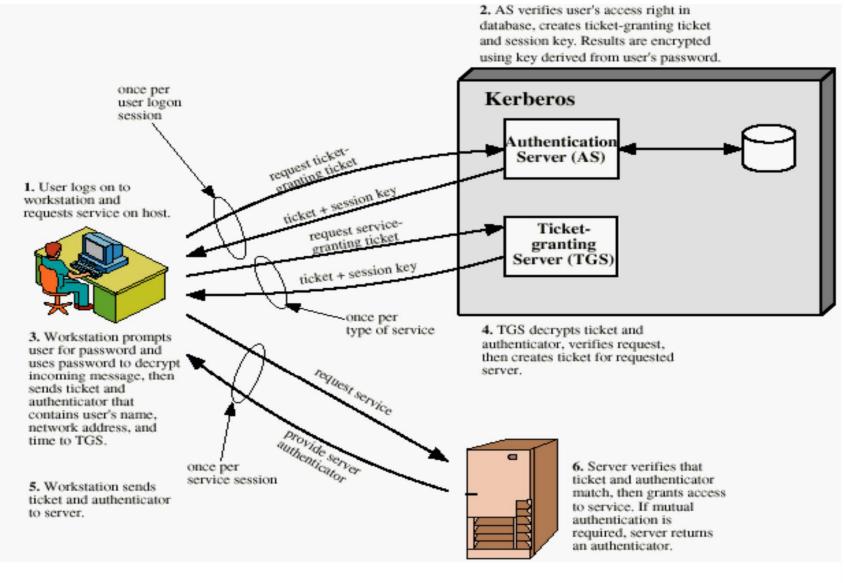

Kerberos

Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr

Kerberos

- Kerberos is a network authentication protocol. Requirements:
 - Security
 - Reliability
 - Transparency
 - Scalability
- Cryptographic authentication for distributed systems
- Based on symmetric-key authentication with KDC
- Developed at MIT: two versions: Version 4 and Version 5 (specified as RFC1510)
 - <u>http://web.mit.edu/kerberos/www</u>

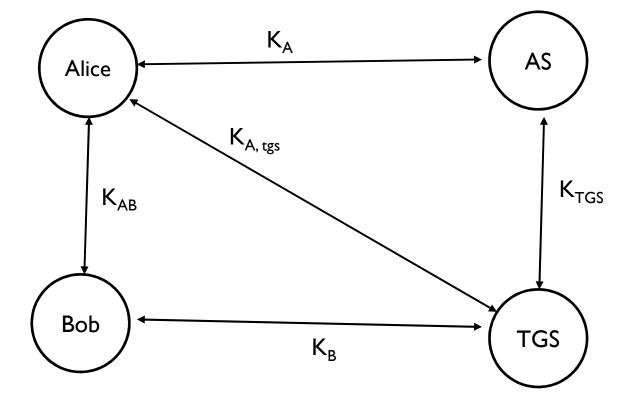


Kerberos

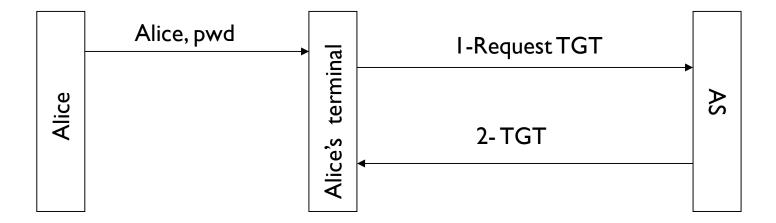
- Advantages:
 - secure authentication
 - single sign-on
 - secure data flow
- Applications benefiting from Kerberos:
 - telnet, ftp
 - BSD rtools (rlogin, rsh, rcp)
 - NFS
 - Others (pine, eudora, etc.)

Overview of Kerberos

Protocol Design Motivations

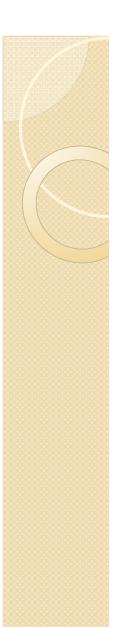

- AS knows passwords for all clients
- AS distributes keys Client-TGS
- TGS distributes keys Client-Server
- Lifetime validity for tickets, include a time validity
- Freshness of messages to prevent replay attacks: use sequence numbers, timestamp or random numbers

Kerberos Keys

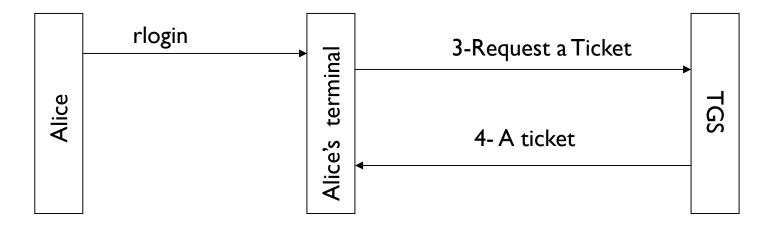

- Each principal shares a "master key" with KDC
 - K_A: Alice's master key. Used for initial authentication
- K_{TGS}: The key known by AS and the TGS.
- K_{A, tgs}: The key shared between the TGS and Alice
- Ticket Granting Tickets (TGT):
 - issued to Alice by AS after login
 - \circ encrypted with K_{TGS}
 - \circ used to obtain session key $K_{A,tgs}$

Key Relation in Kerberos

Logging into the Network


 $\mathbf{Ticket}_{tgs} = \mathsf{E}_{\mathsf{K}_{tgs}} [\mathsf{K}_{\mathsf{A},tgs} || \mathsf{ID}_{\mathsf{A}} || \mathsf{AD}_{\mathsf{A}} || \mathsf{ID}_{tgs} || \mathsf{TS}_{2} || \mathsf{Lifetime}_{2}]$

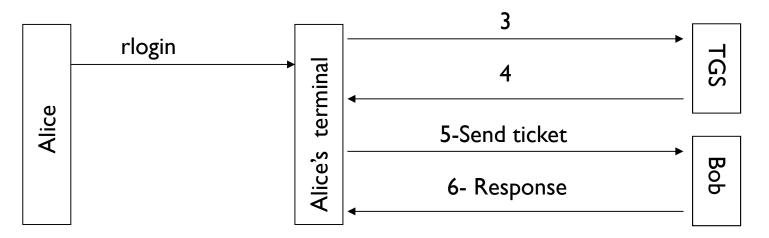
 ID_{tgs} denotes the identifier of the Ticket Granting Server (TGS) $K_{A, tgs}$ is the key shared by the TGS and Alice K_{tgs} key known by AS and the TGS


Logging into the Network

The workstation,

- converts Alice's password into a DES key
- when receives the credentials from the server, decrypts them using this DES key
- if decrypts correctly, authentication is successful
- discards Alice's master key; retains the TGT.
- TGT contains all the information TGS needs about Alice's session; hence TGS can work without remembering any volatile data.

Obtaining a Ticket from TGS


3- Alice \rightarrow TGS: $ID_B || Ticket_{tgs} || Authenticator_A$ 4- TGS \rightarrow Alice: $E_{K_{A,tgs}} [K_{AB} || ID_B || TS_4 || Ticket_B]$

 $\begin{aligned} & \text{Authenticator}_{A} = \mathsf{E}_{\mathsf{K}_{A, tgs}} \left[\left| \mathsf{ID}_{A} \right| \right| \mathsf{AD}_{A} \left| \right| \mathsf{TS}_{3} \right] \\ & \text{Ticket}_{tgs} = \mathsf{E}_{\mathsf{K}_{tgs}} \left[\mathsf{K}_{A, tgs} \right| \left| \left| \mathsf{ID}_{A} \right| \right| \mathsf{AD}_{A} \left| \right| \left| \mathsf{ID}_{tgs} \right| \left| \mathsf{TS}_{2} \right| \right| \mathsf{Lifetime}_{2} \right] \\ & \text{Ticket}_{B} = \mathsf{E}_{\mathsf{K}_{B}} \left[\left| \mathsf{K}_{\mathsf{AB}} \right| \right| \left| \mathsf{ID}_{A} \right| \left| \mathsf{AD}_{A} \right| \left| \mathsf{ID}_{B} \right| \left| \mathsf{TS}_{4} \right| \right| \mathsf{Lifetime}_{4} \right] \end{aligned}$

 K_{B} is the key shared by the TGS and server B

Information Security

Client-Server Authentication Exchange

5-Alice \rightarrow Bob: Ticket_B || Authenticator_A

6- Bob \rightarrow Alice: $E_{K_{AB}}[TS_5 + I]$

 $Ticket_{B} = E_{K_{B}} [K_{AB} || ID_{A} || AD_{A} || ID_{B} || TS_{4} || Lifetime_{4}]$ Authenticator_A = E_{K_{AB}} [ID_{A} || AD_{A} || TS_{5}]

Information Security