

Number Theory, Public Key Cryptography, RSA

Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr

The Euler Phi Function

• Definition:

For a positive integer n, if 0 < a < n and gcd(a,n) = 1, a is relatively prime to n.

• Definition:

Given an integer n, $\varphi(n)$ is the number of positive integers less than or equal to n and relatively prime to n.

The Euler Phi Function

• Theorem: Formula for $\phi(n)$

Let p be prime, e, m, n be positive integers 1) $\varphi(p) = p-1$ 2) if gcd(m,n)=1, then $\varphi(mn)=\varphi(m)\varphi(n)$ 3) $\varphi(p^e) = p^e - p^{e-1}$

4) If
$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$
 then

$$\varphi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})\dots(1 - \frac{1}{p_k})$$

Fermat's Little Theorem

• Fermat's Little Theorem

If p is a prime number and a is a natural number that is not a multiple of p, then

 $a^{p-1} \equiv 1 \pmod{p}$

Information Security

Information Security

Given integer n > 1, such that gcd(a,n) = 1 then

 $a^{\phi(n)} \equiv I \pmod{n}$

Consequence of Euler's Theorem

• Principle of Modular Exponentiation Given integer n>1, x, y, and a positive integers with gcd(a,n)=1. If x=y(mod $\varphi(n)$), then $a^x \equiv a^y \pmod{n}$

• Proof idea:

 $a^{x} = a^{k\phi(n)+y} = a^{y}(a^{\phi(n)})^{k}$

by applying Euler's theorem we obtain $a^x \equiv a^y \pmod{n}$

Diffie-Hellman Key Exchange

- Diffie-Hellman proposed a cryptographic protocol to exchange keys among two parties in 1976.
 - Public parameters:
 - p: A large prime
 - g: Base (generator)
 - Secret parameters:

$$\alpha, \beta \in \{0, 1, 2, ..., p-2\}$$

Security of Diffie-Hellman

- Discrete Logarithm Problem (DLP):
 - Given p, g, g^{α} mod p, what is α ?
 - easy in Z, hard in Z_p
- Diffie-Hellman Problem (DHP):
 - $\circ~$ Given p, g, g^{α} mod p, g^{β} mod p, what is $g^{\alpha\beta}$ mod p?
- DHP is as hard as DLP.

Commutative Encryption

• Definition:

An encryption scheme is commutative if $E_{K1}[E_{K2}[M]] = E_{K2}[E_{K1}[M]]$

Given a commutative encryption scheme, then $D_{K1}[D_{K2}[E_{K1}[E_{K2}[M]] = M$

• Most symmetric encryption scheme are not commutative such as DES and AES.

Asymmetric Encryption Functions

- An asymmetric encryption function:
 - Encryption (K) and decryption (K⁻¹) keys are different.
 - Knowledge of the encryption key is not sufficient for deriving the decryption key efficiently.
 - Hence, the encryption key can be made "public".

Pohlig-Hellman Exponentiation Cipher

- A commutative exponentiation cipher
 - encryption key (e, p), where p is a prime
 - decryption key (d, p), where $ed \equiv I \pmod{(p-I)}$ or in other words $d \equiv e^{-I} \pmod{(p-I)}$
 - to encrypt M, compute C = $M^e \mod p$
 - to decrypt C, compute $M = C^d \mod p = M^{ed} \mod p$

Public Key Encryption

- Each party has a PAIR (K, K⁻¹) of keys:
 - K is the public key
 - $\circ~$ K⁻¹ is the private key

$D_{K}^{-1}[E_{K}[M]]=M$

- The public-key K may be made publicly available.
- Many can encrypt with the public key, only one can decrypt.
- Knowing the public-key and the cipher, it is computationally infeasible to compute the private key.

Solutions with Public Key Cryptography

- Key distribution solution:
 - Alice makes her encryption key K public
 - Everyone can send her an encrypted message: $C = E_{K}(M)$
 - Only Alice can decrypt it with the private key K⁻¹: $M = D_{K}^{-1}(C)$
- Source Authentication Solution:
 - Only Alice can "sign" a message, using K⁻¹.
 - Anyone can verify the signature, using K.
 - Only if such a function could be found...

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
 - Published as R L Rivest, A Shamir, L Adleman, "On Digital Signatures and Public Key Cryptosystems", Communications of the ACM, vol 21 no 2, pp120-126, Feb 1978
- Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence

- Choose large primes p, q
 - Compute n = pq and $\phi(n) = (q-I)(p-I)$
- Choose e, such that $gcd(e, \phi(n)) = I$.
 - Take e to be a prime
- Compute $d \equiv e^{-1} \mod \phi(n)$ ed $\equiv 1 \mod \phi(n)$
 - Public key: n, e
 - Private key: d
- Encryption: $C = E(M) = M^e \mod n$ Decryption: $D(C) = C^d \mod n = M$

RSA Encryption

- Encryption: $C = E(M) = M^e \mod n$,
- Decryption: $D(C) = C^d \mod n$.
- Why does it work?

$$P(M) = (M^e)^d \mod n = M^{ed} \mod n$$

= M^{k\phi(n) + 1} mod n, (for some k)
= (M^{\phi(n)})^k M mod n
= M

- <u>RSA problem</u>: Given n, e, M^e mod n, what is M?
 - Computing d is equivalent to factoring n.
 - The security is based on difficulty of factoring large integers.

RSA Example

- Let p = 11, q = 7, then
 - $n = 77, \phi(n) = 60$
- Let e = 37, then
 - d = I3 (ed = 48I; ed mod 60 = I)
- Let M = 15, then C \equiv M^e mod n C \equiv 15³⁷ (mod 77) = 71

•
$$M \equiv C^d \mod n$$

 $M \equiv 71^{13} \pmod{77} = 15$

RSA Implementation

- The security of RSA depends on how large n is, which is often measured in the number of bits for n.
 - Current recommendation is 1024 bits for n.
- p and q should have the same bit length, so for 1024 bits RSA, p and q should be about 512 bits.
- p-q should not be small.
 - In general, p,q randomly selected and then tested for primality
 - Many implementations use the Rabin-Miller test, (probabilistic test)