Number Theory, Public Key
Cryptography, RSA

Ahmet Burak Can

Hacettepe University
abc@hacettepe.edu.tr

The Euler Phi Function

e Definition:

For a positive integer n, if 0<a<n and gcd(a,n)=1,a is
relatively prime to n.

e Definition:

Given an integer n, @(n) is the number of positive
integers less than or equal to n and relatively prime to
n.

The Euler Phi Function

e Theorem: Formula for ¢(n)
Let p be prime, e, m, n be positive integers
1) o(p) = p-|
2) if gcd(m,n)=1, then @(mn)=¢@(m)p(n)

3) o(p°) = p° — p*’
Hifn=p p,"...p " then

p(1) = (1 =)l = —)..(1 ——
P P> P

Fermat’s Little Theorem

e Fermat’s Little Theorem

If p is a prime number and a is a natural number that is
not a multiple of p, then

aP! = | (mod p)

Euler’s Theorem

e Euler’s Theorem
Given integer n>1, such that gcd(a,n)=1 then
a®" = | (mod n)
e Corollary
Given integer n>1, such that gcd(a,n)=1 then

a®™-' mod n is a multiplicative inverse of a mod n.

Consequence of Euler’s Theorem

* Principle of Modular Exponentiation

Given integer n>1, x,y, and a positive integers with
gcd(a,n)=1. If x=y(mod ¢(n)), then

a* = a’ (mod n)

e Proof idea:
X = gke(n)*ty = a)’(a(P(n))k

by applying Euler’s theorem we obtain

a*=a’ (mod n)

Diffie-Hellman Key Exchange

 Diffie-Hellman proposed a cryptographic protocol to
exchange keys among two parties in|1976.

> Public parameters:
p: A large prime
g: Base (generator)

> Secret parameters:
o, B € {0, 1,2,..,p-2}

Alice Bob
g* mod p
gh mod p
computes computes
(g¥)* mod p (g)P mod p

K =g mod p

Security of Diffie-Hellman

* Discrete Logarithm Problem (DLP):
o Given p, g, g* mod p, what is o!
° easy in Z,hard in Z,

 Diffie-Hellman Problem (DHP):
> Given p, g g* mod p, g® mod p, what is g*P mod p?

e DHP is as hard as DLP.

Commutative Encryption

e Definition:

An encryption scheme is commutative if
Exi[Ex2[M]] = Ex,[Ex [M]]

Given a commutative encryption scheme, then
Dy [DialExi [Exo[M]] = M

e Most symmetric encryption scheme are not
commutative such as DES and AES.

Asymmetric Encryption Functions

* An asymmetric encryption function:
> Encryption (K) and decryption (K-') keys are different.

> Knowledge of the encryption key is not sufficient for deriving
the decryption key efficiently.

> Hence, the encryption key can be made “public”.

K K-!

Plaintext Ciphertext Original
Plaintext

Pohlig-Hellman Exponentiation Cipher

e A commutative exponentiation cipher

(¢]

encryption key (e, p), where p is a prime

o

decryption key (d, p), where ed=1 (mod (p-1)) or in other
words d=e’! (mod (p-1))

(¢]

to encrypt M, compute C = M®* mod p

(¢]

to decrypt C, compute M = Cd mod p = M* mod p

Public Key Encryption

 Each party has a PAIR (K, K-!) of keys:

o K'is the public key
o K-!is the private key

Dy ' [Ec[M]]=M

* The public-key K may be made publicly available.

e Many can encrypt with the public key, only one can
decrypt.

* Knowing the public-key and the cipher, it is
computationally infeasible to compute the private key.

Solutions with Public Key Cryptography

» Key distribution solution:

> Alice makes her encryption key K public

> Everyone can send her an encrypted message:

C =E(M)
> Only Alice can decrypt it with the private key K-':
M =Dy (C)

* Source Authentication Solution:
> Only Alice can “sign” a message, using K-'.
> Anyone can verify the signature, using K.

> Only if such a function could be found...

RSA Algorithm

* Invented in 1978 by Ron Rivest,Adi Shamir and Leonard
Adleman

o Published as R L Rivest,A Shamir, L Adleman, "On Digital
Signatures and Public Key Cryptosystems", Communications of
the ACM, vol 21 no 2, pp120-126, Feb 1978
 Security relies on the difficulty of factoring large

composite numbers

 Essentially the same algorithm was discovered in 1973
by Clifford Cocks, who works for the British
intelligence

RSA Public Key Crypto System

e Choose large primes p, q
o Compute n = pq and ¢(n) = (g-1)(p-1)

e Choose e, such that gcd(e, p(n)) = I.
> Take e to be a prime

» Compute d = e! mod ¢(n) ed = | mod ¢(n)
> Public key: n, e
° Private key:d

e Encryption: C=E(M) = M®*mod n
Decryption: D(C) =C¢modn=M

RSA Encryption

e Encryption: C =E(M) = M® mod n,
e Decryption: D(C) = C¢ mod n.

* Why does it work!?

DM) = (M99 modn = M*¥modn
= MkeM*1I'modn, (for some k)
= (M*M)M mod n
= M

RSA problem: Given n, e, M® mod n, what is M?

> Computing d is equivalent to factoring n.

> The security is based on difficulty of factoring large integers.

RSA Example

e letp=11,q=7,then
> n=77,¢(n) =60
e Lete = 37, then
> d=13(ed =48]; ed mod 60 = |)

e Let M =15, then C=M®mod n
C = 15% (mod 77) = 71

e M=C9modn
M=71"(mod 77) = 15

RSA Implementation

* The security of RSA depends on how large n is, which is
often measured in the number of bits for n.

o Current recommendation is 1024 bits for n.

e p and g should have the same bit length, so for 1024 bits
RSA, p and q should be about 512 bits.
e p-q should not be small.

° In general, p,q randomly selected and then tested for primality

> Many implementations use the Rabin-Miller test, (probabilistic
test)

