

Number Theory, Public Key Cryptography, RSA

Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr

Information Committee

The Euler Phi Function

- Theorem: Formula for $\phi(\textbf{n})$ Let p be prime, e, m, n be positive integers
 - 1) $\varphi(p) = p-1$
 - 2) if gcd(m,n)=1, then $\phi(mn)=\phi(m)\phi(n)$
 - 3) $\varphi(p^e) = p^e p^{e-1}$
 - 4) If $n = p_1^{e_1} p_2^{e_2} ... p_k^{e_k}$ then

$$\varphi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})...(1 - \frac{1}{p_k})$$

Information Security

The Euler Phi Function

Definition:

For a positive integer n, if $0 \le a \le n$ and gcd(a,n)=1, a is relatively prime to n.

Definition:

Given an integer n, $\phi(n)$ is the number of positive integers less than or equal to n and relatively prime to n.

Information Securi

Fermat's Little Theorem

• Fermat's Little Theorem

If p is a prime number and a is a natural number that is not a multiple of p, then

$$a^{p\text{-}1} \equiv 1 \text{ (mod p)}$$

nformation Security

Euler's Theorem

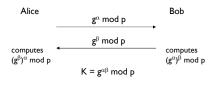
- Euler's Theorem Given integer n>1, such that gcd(a,n)=1 then $a^{\phi(n)} \equiv 1 \pmod{n}$
- Corollary Given integer n>1, such that gcd(a,n)=1 then $a^{\phi(n)-1}$ mod n is a multiplicative inverse of a mod n.

Information Security

Diffie-Hellman Key Exchange

- Diffie-Hellman proposed a cryptographic protocol to exchange keys among two parties in 1976.
 - Public parameters:
 - p: A large prime
 - g: Base (generator)
 - Secret parameters:

$$\alpha, \beta \in \{0, 1, 2,...,p-2\}$$



Information Security

Consequence of Euler's Theorem

- Principle of Modular Exponentiation Given integer n>1, x, y, and a positive integers with gcd(a,n)=1. If $x\equiv y \pmod{\phi(n)}$, then $a^x\equiv a^y \pmod{n}$
- Proof idea:

 $a^{x} = a^{k\varphi(n)+y} = a^{y}(a^{\varphi(n)})^{k}$

by applying Euler's theorem we obtain $a^x \equiv a^y \pmod{n}$

Information Securit

Security of Diffie-Hellman

- Discrete Logarithm Problem (DLP):
 - Given p, g, g^{α} mod p, what is α ?
 - easy in Z, hard in Z_p
- Diffie-Hellman Problem (DHP):
 - $^{\circ}$ Given p, g, g^{\alpha} mod p, g^{\beta} mod p, what is g^{\alpha\beta} mod p?
- DHP is as hard as DLP.

Information Security

Commutative Encryption

• Definition:

An encryption scheme is commutative if $E_{K_1}[E_{K_2}[M]] = E_{K_2}[E_{K_1}[M]]$

Given a commutative encryption scheme, then $D_{K1}[D_{K2}[E_{K1}[E_{K2}[M]] = M$

• Most symmetric encryption scheme are not commutative such as DES and AES.

Information Security

Pohlig-Hellman Exponentiation Cipher

- A commutative exponentiation cipher
 - encryption key (e, p), where p is a prime
- $^{\circ}$ decryption key (d, p), where ed≡1 (mod (p-1)) or in other words d≡e⁻¹ (mod (p-1))
- to encrypt M, compute C = Me mod p
- to decrypt C, compute $M = C^d \mod p = M^{ed} \mod p$

Information Security

Asymmetric Encryption Functions

• An asymmetric encryption function:

• Encryption (K) and decryption (K-1) keys are different.

• Knowledge of the encryption key is not sufficient for deriving the decryption key efficiently.

• Hence, the encryption key can be made "public".

K

| Ciphertext | Ciphertext | Original Plaintext | Plaintext | Original Plaintext | Or

Public Key Encryption

- Each party has a PAIR (K, K-1) of keys:
 - K is the public key
 - K-I is the private key

$$D_{K}^{-1}[E_{K}[M]]=M$$

- The public-key K may be made publicly available.
- Many can encrypt with the public key, only one can decrypt.
- Knowing the public-key and the cipher, it is computationally infeasible to compute the private key.

Information Security

12

Solutions with Public Key Cryptography

- Key distribution solution:
 - · Alice makes her encryption key K public
 - Everyone can send her an encrypted message: $C = E_{\kappa}(M)$
 - Only Alice can decrypt it with the private key K^{-1} : $M = D_{\kappa}^{-1}(C)$
- Source Authentication Solution:
 - Only Alice can "sign" a message, using K-1.
- Anyone can verify the signature, using K.
- Only if such a function could be found...

Information Security

1.2

RSA Public Key Crypto System

- Choose large primes p, q
 - Compute n = pq and $\varphi(n) = (q-1)(p-1)$
- Choose e, such that $gcd(e, \varphi(n)) = 1$.
 - Take e to be a prime
- Compute $d \equiv e^{-1} \mod \varphi(n)$ ed $\equiv 1 \mod \varphi(n)$
 - Public key: n, e
 - Private key: d
- Encryption: C= E(M) = M^e mod n
 Decryption: D(C) = C^d mod n = M

Information Security

15

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
 - Published as R L Rivest, A Shamir, L Adleman, "On Digital Signatures and Public Key Cryptosystems", Communications of the ACM, vol 21 no 2, pp 120-126, Feb 1978
- Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence

Information Securit

1.4

RSA Encryption

- Encryption: $C = E(M) = M^e \mod n$,
- Decryption: $D(C) = C^d \mod n$.
- · Why does it work?

$$\begin{array}{lll} D(M) &=& (M^e)^d \bmod n &=& M^{ed} \bmod n \\ &=& M^{k\phi(n)+1} \bmod n, \quad (\textit{for some } k) \\ &=& (M^{\phi(n)})^k \, M \bmod n \\ &=& M \end{array}$$

- RSA problem: Given n, e, Me mod n, what is M?
 - · Computing d is equivalent to factoring n.
 - The security is based on difficulty of factoring large integers.

Information Security

16

RSA Example

- Let p = 11, q = 7, then
 - n = 77, $\varphi(n) = 60$
- Let e = 37, then
 - $oldsymbol{0} d = 13 (ed = 481; ed mod 60 = 1)$
- Let M = 15, then $C \equiv M^e \mod n$ $C \equiv 15^{37} \pmod{77} = 71$
- $M \equiv C^d \mod n$ $M \equiv 71^{13} \pmod{77} = 15$

Information Security

RSA Implementation

- The security of RSA depends on how large n is, which is often measured in the number of bits for n.
 - Current recommendation is 1024 bits for n.
- p and q should have the same bit length, so for 1024 bits RSA, p and q should be about 512 bits.
- p-q should not be small.
 - o In general, p, q randomly selected and then tested for primality
 - Many implementations use the Rabin-Miller test, (probabilistic test)

Information Security

18