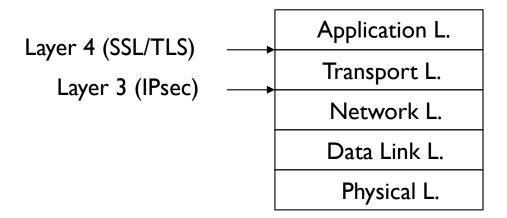


Ahmet Burak Can
Hacettepe University
abc@hacettepe.edu.tr

The Internet

A packet-switched network:

- Data to be transmitted is divided into "packets"
- Each packet is forwarded by "routers" towards the destination

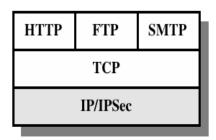


TCP/IP Reference Model

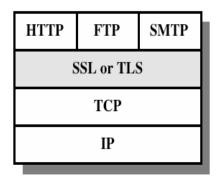
Application Layer (HTTP, FTP, SMTP, etc.)		
Transport Layer (TCP, UDP)		
Network Layer (IP)		
Data Link Layer (PPP, Ethernet, etc.)		
Physical Layer		

- IP: delivery of packets to the destination
- TCP: reliability of the communication
 - ordering the packets
 - error detection & recovery
 - congestion control
- UDP: basic transport protocol

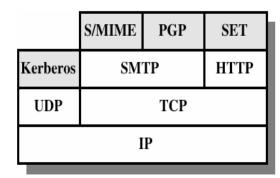
Securing TCP/IP Communications


Layer 3:

- can secure all IP communication transparent to applications
- must be built into the OS

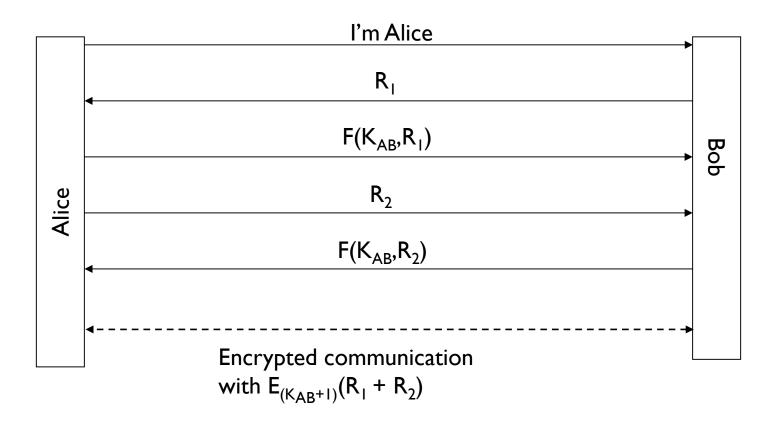

Layer 4:

doesn't require OS modification; deployment easy

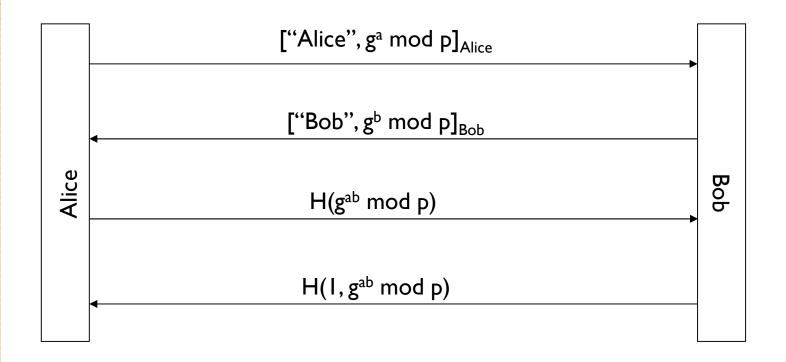

Different Security Models in TCP/IP

(b) Transport Level

(c) Application Level

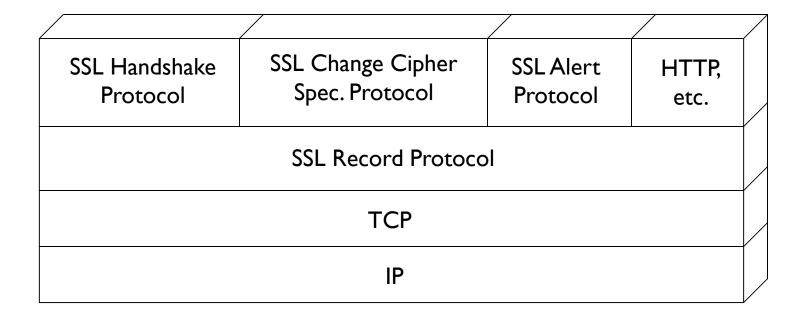

Real-Time Protocol Security Issues

- Interactive session security (unlike e-mail)
- Layer 4 (SSL)
 - Implemented on top of layer 4, between TCP & application
 - Doesn't require any modifications to OS (deployment made easy!)
- Layer 3 (IPsec)
 - Implemented between IP & TCP
 - Each IP packet authenticated separately
 - Built in the OS
 - Can secure all IP communication
 - Host-to-host application is common.
 Process-to-process also possible


Perfect Forward Secrecy

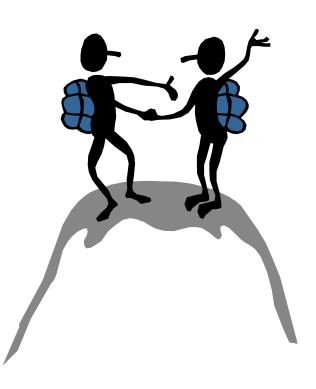
- PFS: Compromise of long-term secrets doesn't compromise session keys
- Example: Diffie-Hellman with RSA authentication
- Non-PFS examples:
 - Kerberos
 - Session key transport with RSA encryption
- By-product: Escrow foilage
 Conversations can't be decrypted by authorities holding copies of long-term private keys

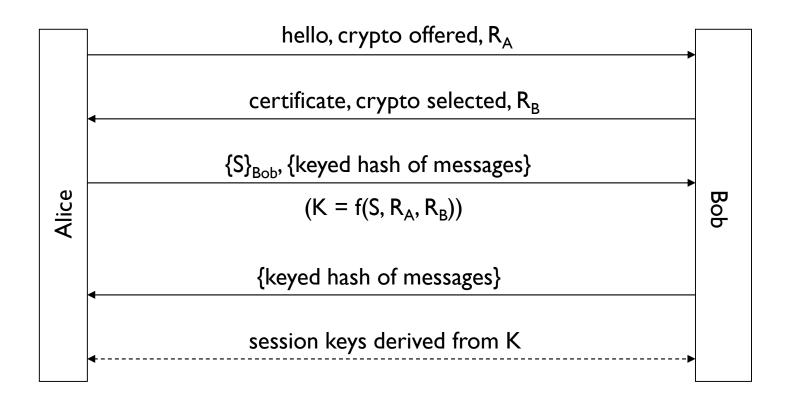
A non-PFS Protocol Example


A PFS Protocol Example: Diffie-Hellman with RSA signature

SSL/TLS

- SSLv2
 - Released in 1995 with Netscape 1.1
 - Key generation algorithm kept secret
 - Reverse engineered & broken by Wagner & Goldberg
- SSLv3
 - Fixed and improved, released in 1996
 - Public design process
- PCT: Microsoft's version of SSL
- TLS: IETF's version


SSL Architecture


- Record Protocol: Message encryption/authentication
- Handshake Protocol: Identity authentication & key exchange
- Alert Protocol: Error notification (cryptographic or otherwise)
- Change Cipher P.: Activate the pending crypto suite

Handshake Protocol

- Negotiate Cipher-Suite Algorithms
 - Symmetric cipher to use
 - Key exchange method
 - Message digest function
- Establish the shared master secret
- Optionally authenticate server and/or client

Basic SSL/TLS Handshake Protocol

Key Computation

- "pre-master key": S
- "master key": $K = f(S, R_A, R_B)$
- For each connection, 6 keys are generated from K and the nonces. (3 keys for each direction: encryption, authentication/integrity, IV)

Session and Connection

Session:

- association between a client and a server;
- created by the Handshake Protocol;
- defines secure cryptographic parameters that can be shared by multiple connections.

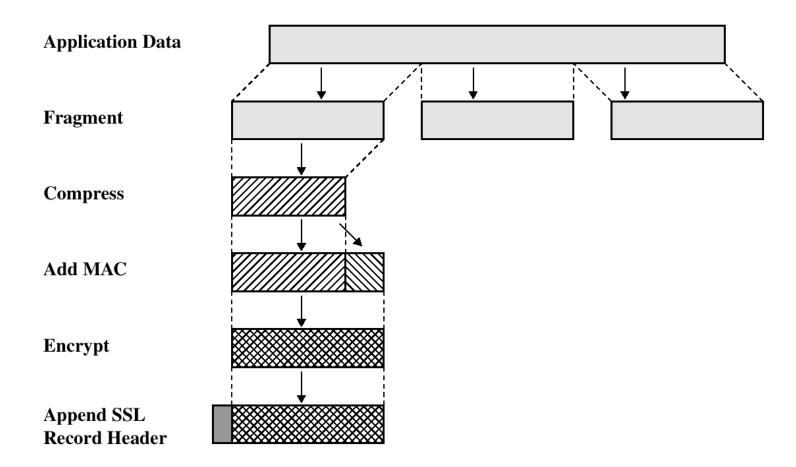
Connection:

- end-to-end reliable secure communication;
- every connection is associated with a session.

SSL Session Establishment

- Client authentication: Bob can optionally send "certificate request" in message 2.
- Session vs. Connection: "Sessions" are relatively long-lived. Multiple "connections" (TCP) can be supported under the same SSL session. (designed for HTTP 1.0)
- To start a connection, Alice can send an existing session ID.
- If Bob doesn't remember the session ID Alice sent, he responds with a different value.

Negotiating Crypto Suites


- Crypto suite: A complete package specifying the crypto to be used. (encryption algorithm, key length, integrity algorithm, etc.)
 - ~30 predefined standard cipher suites.
 - Confidentiality: Achieved by encryption using DES, 3DES, RC2, RC4, IDEA.
 - Integrity: Achieved by computing a MAC and send it with the message; MD5, SHA1.
 - Key exchange: relies on public key encryption.

• Selection:

- v2:Alice proposes a set of suites; Bob returns a subset of them;
 Alice selects one. (which doesn't make much sense)
- v3:Alice proposes a set of suites; Bob selects one.

SSL Record Protocol

 Provides confidentiality and message integrity using shared keys established by the Handshake Protocol

IPsec

- Cryptographic protection of the IP traffic, transparent to the user
- Main components:
 - Internet Key Exchange (IKE): IPsec key exchange protocol
 - Authentication Header (AH): Authentication of the IP packet
 - Encapsulating Security Payload (ESP): Encryption/authentication of the IP packet

Uses of IPsec

- Can be used to provide user-, host-, or network-level protection (the granularity)
- Protocol modes:
 - Transport mode: Host applies IPsec to transport layer packet
 - Tunnel mode: Gateway applies IPsec to the IP packet of a host from the network (IP in IP tunnel)
- Typical uses:
 - Remote access to network (host-to-gateway)
 - Virtual private networks (gateway-to-gateway)

Security Association & Policy

Security Policy Database

Specifies what kind of protection should be applied to packets (according to source-destination address, port numbers, UserID, data sensitivity level, etc.)

- Security Association (SA)
 - An IPsec-protected connection (one-way)
 - Specifies the encryption/auth. algorithm, key, etc.
 - Identified by
 - security parameter index (SPI)
 - destination IP address
 - protocol identifier (AH or ESP)
 - SAs are stored in SA databases
 - AH information (auth. algorithm, key, key lifetime, etc.)
 - ESP information (auth./encryption algorithm, key, key lifetime, etc.)
 - Lifetime of the SA

IPsec Packet Processing

Outbound packets:

- The proper SA is chosen from the security policy database
- From the SA database, the SPI and SA parameters are retrieved
- The IPsec protection is performed; packet passed to IP

Inbound packets:

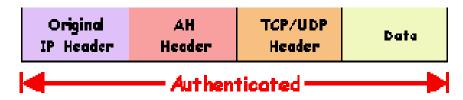
- By the SPI, the SA is found
- IPsec auth./decryption is performed
- Packet passed to upper layer protocol

History of IKE

- Early contenders:
 - Photuris: Authenticated DH with cookies & identity hiding
 - SKIP: Authenticated DH with long-term exponents
- ISAKMP:
 - A protocol specifying only payload formats & exchanges (i.e., an empty protocol)
 - Adopted by the IPsec working group
- Oakley: Modified Photuris; can work with ISAKMP
- IKE: A particular Oakley-ISAKMP combination

Authentication Header (AH)

- IPSEC service to protect packet integrity
 - It can used in either transport or tunnel mode
- Auth. Algorithms
 - HMAC (with MD5, SHA1, etc.)
 - CBC-MAC (3DES, RC5, AES, etc.)
- Typically, the initialization vector (IV) is included in the payload (data)
- Authentication covers immutable fields of IP header as well as the payload.

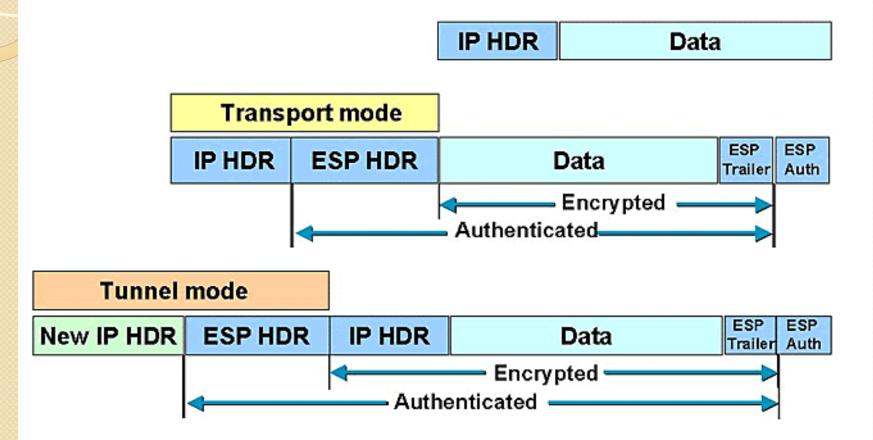

AH with IPv4

IPSec Authentication Header (AH): IP protocol number 51

Before applying AH

Original	TCP/UDP	N _1_
IP Header	Header	Data

IPSec Transport Mode: After applying AH


IPSec Tunnel Mode: After applying AH

- IPSEC service to protect packet integrity and confidentiality
 - It can used in either transport or tunnel mode
- Encryption: Usually a block cipher in CBC mode
- The initialization vector (IV) is included in the payload

ESP with IPv4

