
Secure Programming

Buffer Overflows

Ahmet Burak Can

Hacettepe University

1

Learning objectives

� Understand the definition of a buffer overflow

� Learn the importance of buffer overflows

� Know how buffer overflows happen

� Know how to handle strings safely with regular "C"

functions

� Learn safer ways to manipulate strings and buffers

2

Buffer Overflows

� a.k.a. "Buffer Overrun"

� A buffer overflow happens when a program attempts

to read or write data outside of the memory allocated

for that data

� Usually affects buffers of fixed size

� Special case of memory management and input

validation

3

An Important Vulnerability

Type

� Most Common (over 60% of CERT advisories)

� Well understood

� Easy to avoid in principle

� Dont use "C" family languages, or be thorough

� Can be tricky (off-by-one errors)

� Tedious to do all the checks properly

� Temptation: "I don't need to because I control this data and
I *know* that it will never be larger than this"

� Until a hacker figures out how to change it

4

Example Overflow

char B[10];

B[10] = x;

� Array starts at index zero

� So [10] is 11th element

� One byte outside buffer was referenced

� Off-by-one errors are common and can be

exploitable!

5

Other Example

function do_stuff(char * a) {

char b[100];

...

strcpy(b, a); // (dest, source)

...

}

� What is the size of the string located at “a”?

� Is it even a null-terminated string?

� What if it was "strcpy(a, b);" instead?

� What is the size of the buffer pointed to by "a"?

6

What happens when memory

outside a buffer is accessed?

� If memory doesn't exist:

� Bus error

� If memory protection denies access:

� Segmentation fault

� General protection fault

� If access is allowed, memory next to the buffer can be

accessed

� Heap

� Stack

� Etc...

7

Real Life Example:

efingerd.c, v. 1.6.2

int get_request (int d, char buffer[], u_short len) {

u_short i;

for (i=0; i< len; i++) {

...

}

buffer[i] = ‘\0’;

return i;

}

� What is the value of "i" at the end of the loop?

� Which byte just got zeroed?

� It's tricky even if you try to get things right...

8

Real Life Example:

efingerd.c, v. 1.5

� CAN-2002-0423
static char *lookup_addr(struct in_addr in) {

static char addr[100];

struct hostent *he;

he = gethostbyaddr(...)

strcpy (addr, he->h_name);

return addr;

}

� How big is he->h_name?

� Who controls the results of gethostbyaddr?

� How secure is DNS? Can you be tricked into looking

up a maliciously engineered value?

9

A Typical Stack Exploit

� The stack contains:

� Parameters (arguments) to

function

� Return Address

� Local variables

� Anything pushed on the stack

� addr[100+] overwrites

the return address

� addr[0] typically

contains exploit

code

� Return address is

chosen to point at exploit

code!

10

Arguments

Return Address

Low Addresses

High Addresses

Stack
grows
this way

addr[99]

addr[0]

Fundamental "C" Problems

� You can't know the length of buffers just from a pointer

� Partial solution: pass the length as a separate argument

� "C" string functions aren't safe

� No guarantees that the new string will be null-terminated!

� Doing all checks completely and properly is tedious and

tricky

11

Strlen

� What happens when you call strlen on an improperly

terminated string?

� Strlen scans until a null character is found

� Can scan outside buffer if string is not null-terminated

� Can result in a segmentation fault or bus error

� Strlen is not safe to call!

� Unless you positively know that the string is null-

terminated...

� Are all the functions you use guaranteed to return a null-
terminated string?

12

Strcpy

char * strcpy(char * dst, const char * src);

� How can you use strcpy safely?

� Set the last character of src to NULL

� According to the size of the buffer pointed to by src or a size
parameter passed to you

� Not according to strlen(src)!

� Wide char array: sizeof(src)/sizeof(src[0]) -1 is the index of the
last element

� Check that the size of the src buffer is smaller than or

equal to that of the dst buffer

� Or allocate dst to be at least equal to the size of src

13

Strncpy

char * strncpy(char * dst, const char * src, size_t len);

� "len" is maximum number of characters to copy

� What is the correct value for len?

� If dst is an array, sizeof(dst)

� What if src is not NULL-terminated?

� Don't want to read outside of src buffer

� What is the correct value for "len" given that?

� Spare one character for NULL byte

� MIN(sizeof(dst), sizeof(src)) – 1

� Other issue: "dst" is NULL-terminated only if less than "len" characters were
copied!

� All calls to strncpy must be followed by a NULL-termination operation

14

Question Answer

� What’s wrong with this function?

 function do_stuff(char * a) {

char b[100];

...

strncpy(b, a, strlen(a));

...

}

� The string pointed to by could be larger than the size

of "b"!

15

Question Answer

�What’s wrong with this function?

function do_stuff(char * a) {

char *b;

...

b = malloc(strlen(a)+1);

strncpy(b, a, strlen(a));

...

}

� Are you absolutely certain that the string pointed to by

"a" is NULL-terminated?

16

Corrected Efinger.c (v.1.6)

� sizeof is your friend, when you can use it (if an array)

static char addr[100];

he = gethostbyaddr(...);

if (he == NULL)

strncpy(addr, inet_ntoa(in), sizeof(addr));

else

strncpy(addr, he->h_name, sizeof(addr));

� What is still wrong?

17

Corrected Efinger.c (v.1.6)

� Notice that the last byte of addr is not zeroed, so this code can

produce non-NULL-terminated strings!

static char addr[100];

he = gethostbyaddr(...);

if (he == NULL)

strncpy(addr, inet_ntoa(in), sizeof(addr));

else

strncpy(addr, he->h_name, sizeof(addr));

18

Strcat

char * strcat(char * s, const char * append);

� String pointed to by "append" is added at the end of the string

contained in buffer "s"

� No check for size!

� Need to do all checks beforehand

� Example with arrays:

� if (sizeof(s)-strlen(s)-1 >= strlen(append))

strcat(s, append);

� Need to trust that "s" and "append" are NULL-terminated

� Or set their last byte to NULL before the checks and call

19

Strncat

char * strncat(char * s, const char * append,

size_t count);

� No more than "count" characters are added, and then a NULL

is added

� Correct call is complex:

� strncat(s, append, sizeof(s)-strlen(s)-1)

� Not a great improvement on strcat, because you still need to calculate
correctly the count

� And then figure out if the string was truncated

� Need to trust that "s" and "append" are NULL-terminated

� Or set their last byte to NUL before the checks and call

20

Strlcat

size_t strlcat(char *dst, const char *src, size_t
size);

� Call semantics are simple:

� strlcat(dst, src, dst_len);

� If an array:

�strlcat(dst, src, sizeof(dst));

� Safety: safe even if dst is not properly terminated

� Won't read more than size characters from dst when looking for
the append location

� Not safe if src is not properly terminated!

� If dst is large and the buffer for src is small, then it could cause a
segmentation fault or bus error, or copy confidential values

21

Issues with Truncating Strings

� Subsequent operations may fail or open up

vulnerabilities

� If string is a path, then it may not refer to the same thing,

or be an invalid path

� Truncation means you weren't able to do what you

wanted

� You should handle that error instead of letting it go

silently

22

Truncation Detection

� Truncation detection was simplified by strlcpy and
strlcat, by changing the return value

� The returned value is the size of what would have been
copied if the destination had an infinite size

� if the returned value is larger than the destination size,
truncation occurred

� Source still needs to be NULL-terminated

� Inspired by snprintf and vsprintf, which do the same

� However, it still takes some consideration to make sure
the test is correct:

� if (strlcpy(dest, src, sizeof(dest)) >=
sizeof(dest)) goto toolong;

23

Multi-Byte Character

Encodings

� Handling of strings using variable-width encodings or

multi-byte encodings is a problem

� e.g., UTF-8 is 1-4 bytes long

� How long is the string?

� In bytes

� In characters

� Overflows are possible if size checks do not properly

account for character encoding!

� .NET: System.String supports UTF-16

� Strings are immutable - no overflow possible there!

24

Safestr

� Free library for safe string operations:

� https://manned.org/safestr/20fb981d

� Features:

� Works on UNIX and Windows

� Buffer overflow protection

� String format protection

� Limitations and differences:

� Does not handle multi-byte characters

� License: binaries must reproduce a copyright notice

� NULL characters have no special meaning

� Must use their library functions all the time (but conversion to
regular "C" strings is easy)

25

Microsoft Strsafe

� Null-termination guaranteed

� Option for using either number of characters or bytes (for
Unicode character encoding), and disallowing the other

� Option to treat truncation as a fatal error

� Define behavior upon error

� Output buffer set to "" or filled

� Option to prevent information leaks

� Pad rest of buffer

� However, correct calculations still needed

� e.g., wcsncat requires calculating the remaining space in the
destination string...

26

Future Microsoft

� Visual Studio 2005 have a new series of safe string

manipulation functions

� strcpy_s()

� strncpy_s()

� strncat_s()

� strlen_s()

� etc...

� Visual Studio 2005 (as of Beta 1) by default issues

deprecation warnings on strcpy, strncpy, etc… Say

goodbye to your old friends, they're too dangerous!

27

Other Unsafe Functions:

sprintf family

int sprintf(char *s, const char *format, /* args*/ ...);

� Buffer "s" can be overflowed

int snprintf(char *s, size_t n, const char *format,
/* args*/ ...);

� Does not guarantee NULL-termination of s on some platforms (Microsoft,
Sun)

� MacOS X: NULL-termination guaranteed

� Which is it on the server? Check with "man snprintf "

int vsprintf(char * str, const char * format, va_list
ap);

� Buffer "str" can be overflowed

28

Gets, fgets

char *gets(char *str);

� Buffer "str" can be overflowed

char *fgets(char * str, int size, FILE * stream);

� Buffer "str" is not NULL-terminated if an I/O error occurs

� If an error occurs, returns NULL

� If end-of-file occurs before any characters are read, returns NULL

also (and buffer is unchanged)

� Callers must use feof(3) and ferror(3) to determine which

occurred.

29

Conclusion

� Buffer sizes should be passed as a parameter with

every pointer

� Applies to other buffer manipulations besides strings

� Need simple truncation detection

30

Preventing Buffer Overflows

Without Programming

� Idea: make the heap and stack non-executable

� Because many buffer overflow attacks aim at executing

code in the data that overflowed the buffer

� Doesn't prevent "return into libc" overflow attacks

� Because the return address of the function on the stack

points to a standard "C" function (e.g., "system"), this

attack doesn't execute code on the stack

� e.g., ExecShield for Fedora Linux (used to be RedHat

Linux)

31

Canaries on a Stack

� Add a few bytes containing special values between

variables on the stack and the return address.

� Before the function returns, check that the values are

intact.

� If not, there's been a buffer overflow!

� Terminate program

� If the goal was a Denial-of-Service then it still happens

� At least the machine is not compromised

� If the canary can be read by an attacker, then a

buffer overflow exploit can be made to rewrite them

� e.g., see string format vulnerabilities

32

Canary Implementations

� StackGuard

� Stack-Smashing Protector (SSP)

� Formerly ProPolice

� gcc modification

� Used in OpenBSD

� http://www.trl.ibm.com/projects/security/ssp/

� Windows: /GS option for Visual C++ .NET

� These can be useful when testing too!

33

Protection Using Virtual

Memory Pages

� Page: A chunk (unit) of virtual memory

� POSIX systems have three permissions for each page.

� PROT_READ

� PROT_WRITE

� PROT_EXEC

� Idea: manipulate and enforce these permissions

correctly to defend against buffer overflows

� Make injected code non-executable

34

Windows Execution

Protection

� "NX" (No Execute)

� Windows XP service pack 2 feature

� Somewhat similar to POSIX permissions

� Requires processor support

� AMD64

� Intel Itanium

35

Buffer Overflow Lab

� Create your own safe version of the strlen, strcpy, strcat

� Name them mystrlen, mystrcpy and mystrcat

� Pass buffer sizes for each pointer argument

� Return 0 if successful, and 1 if truncation occurred

� Other error codes if you wish

� Make your implementation pass all test cases

� int mystrlen(const char *s, size_t s_len);

� In this case, return the string length, not zero or one.

� int mystrcpy(char * dst, const char * src, size_t dst_len, size_t src_len);

� int mystrcat(char * s, const char * append, size_t s_len, size_t a_len);

36

Things to Ponder

� What about 0 as source size? Error or not?

� What if “s” is NULL?

� What about overlapping buffers? Undefined everytime, or only

in certain cases?

� What if reach the end in mystrlen?

� How efficient to make it -- how many passes at source string are

made?

� What to check first?

� Reuse mystrlen within mystrcpy or mystrcat?

� Compare your implementations to strl*, strsafe, safestr, str*_s.

37

