Secure Programming

Cross-Site Request
Forgery(CSRF)
Vulnerabities

Ahmet Burak Can

Agenda

»\Web Application Authentication
» CSRF / Session Riding

mServer Side Countermeasures

= Client Side Protection

= Conclusion

The Browser “Same Origin”
Policy

bank.com

blog.net

document, cookies

Explicit Authentication

» The authentication credentials are communicated by
the web application

» URL rewriting: Session token is included in every URL

®» Form based session tokens

Immune against CSRF

(actually only almost immune)

Implicit Authenfication

» Automatically executed by the browser

» Cookies

http authentication (Basic, Digest, NTLM)

IP based schemes
Client side SSL

Potentially vulnerable to CSRF

Session management with
cookies

» After the authentication form the server sets a cookie at the client’s
browser

» Aslong as this cookie is valid, the client’s requests are treated as
authorized

Web browser Web server
1 %..
i b page
"Welcome in Web p
GETfresiﬁdcdf_
; i

Content of restricted page

4 /

HTTP authentication (Basic, Digest)

m The client requests a restricted ~ Client Server

resource GET

'ndex-htm/
m The server answers with a “401 \

Unauthorized” response B
orze

m This causes the client’s browser 401 unauth
to demand the credentials
m The client resends the request

user’s credentials are
included via the “Authorization”
eader

Every further request to that
authentication realm contains
the credentials automatically

IP based authentication

Intranet webserver

Client side SSL authentication CSRF / Session Riding

» The client web browser possesses a X.509 certificate that was signed by an

authority that is trusted by the web application » Exploits implicit authentication mechanisms
» Known since 2001

» CSRF a.k.a. CSRF a.k.a. “Session Riding” (a.k.a. “Sea Surf”)

» |nitial authentication:
» The client has to prove his identity
= For this reason, the web server demands a valid signature from the client

» > “SSL handshake”

» Unknown/underestimated attack vector (compared to
XSS or SQL injection)

» The Attack:

» The attacker creates a hidden http request inside the
victim's web browser

» Depending on the browser, the user may or may not confirm the initial handshake
entering a password (only once)

» |f the handshake was successful, a SSL session is established between the clit

browser and the web server
= This request is executed in the victim's authentication

» Aslong as the SSL session is valid, all request to the web server are fransmitte context

using the negotiated credentials

CSRF / Session Riding (ll)

www.bank.com

CSRF / Session Riding (ll)

www.bank.com www.attacker.org
™.
\\\\ \\ //;/

Cookie: auth_ok Cookie: auth_ok

i [T

Cross-Site Request Forgery

bank.com

Confirm Transaction
https://bank.com/fn?param=1

Ll e attacker’s post at blog.net

How Does CSRF Worke

= Tags

am=1">

<iframe src=“https://bank.com/fn?pa

RN

<script src=“https://bank.com/fn?para

» Autoposting Forms
<body onload="document.forms[0].submit () ">

<form method="POST" action=“https://bank.com/fn”>

<input type="hidden" name="sp" value="8109"/>

</form>

» XmlHttpRequest

= Subject to same origin policy

Credentials Included

bank.com
= — i
/ - _

— https://bank.com/fn? prram*'
JSESSIONID=AC934234..

I

—3 m /

/‘\)

P - blog.net

CSRF / Session Riding (lll)

» Cause: The web application does not verify that state
changing request were created “within” the web
application

- » Attack methods:

» Forging GET requests:

» |mage tag with SRC attribute that points to a state changing
URL

» The URL might be obfuscated by a http redirect

» Forging POST request:
» Attacker creates an IFRAME (or a pop-up window)
» The frame is filled with a HTML form

®» This form is submitted via JavaScript

Cross-domain interactions

» Recall...

» <script src=http://good.com/foo></script>in bad page
would cause legitimate script to run in context of bad

page!
» |nstead, malicious page can initiate a POST request to
legitimate page, with arbifrary parameters

= Due to the way web authentication is handled (i.e., using
a cached credential), http requests will look as if they
come from the legitimate user if they are logged in when
they view the malicious page

CSRF Example

(s,
S

<form method="POST" name="evilform" target="hiddenframe"
action="https://www.good.com/update pwd">
<input type="hidden" id="password" value=“badpwd">
</form>
<iframe name="hiddenframe" style="display: none">
</iframe> <script>document.evilform.submit () ;</script>

1. Alice’s browser loads page from bad.com

2. Script runs causing evilform to be submitted with a
password-change request by loading
www.good.com/update_pwd with attacker-specified
field

3. Browser sends authentication cookies to good server. Honest
user’'s password is changed to badpwd!

Example 1: Breaking
Applications

Digye's bloy
rs. blogs pot.com B2 [Cl- coogle

» Vulnerable: digg.com

06 || = FLrG? | NEXT BLOG»

» digg.com'’s frontpage is
determined by the number
of "diggs” a certain story
gets

/

Digger's blog

Tuesday, June 06, 2006

= Using CSRF a webpage was

able to cause the victim's How to defeat digg.com
browser to “digg” an
arbitrary URL ... an introduction to session riding

= The demo page "digged e e i e O vl
itself and maybe you'll find out some interesting things about session

riding.

Example 2: Causing
Financial Loss

» Vulnerable: Netflix.com

» Add movies to your rental queue WETFLIY ==
» Add a movie to the Top of your The Best Way to Rent Movies
rental queue SR

» Change the name and address R
on your account

» Change the email address and
password on your account (i.e.,
takeover your account)

» Cancel your account
(Unconfirmed/Conjectured)

Example 3: Owning the

Server

= Vulnerable: Wordpress 2.02

» Wordpress' theme editor was
usceptible fo CSRF

Wordpress theme-files can be
php-files

= Via CSRF an aftacker could
modify those files to contain
arbitrary php-code

Hacker's Di

ry> Edi: Themes — WordPress

8086
<~ J[e][+] @hup stiaases.iniom
Hacker’s Diary wevees

uni-har burg.de />uifwo2 pwp-adinin/ 1~ G- Gocele

Howdy, hacker. [Sign Out, My Accourt]

Dasnboard Write Manage Links Presentation Plugins Users Options Import

hemes [IYRYYCNCN Header image and Color

Select therve to adit: | WordPress Defaule [#) (select)

Browsing header.php

‘WordPress Default’
theme files
Stylesheet

sidebar

Example 4: Exploring the

Intfranet

» Vulnerable: (most) infranet
webservers

» By dynamically including
external images and using
fimed JavaScript events, a
malicious website can,
e.g.

= Portscan the intranet

= Fingerprint existing web
servers and installed
applications

=» - “JavaScript Malware”

Browser Exploit Frameworik

8006
| E] Fhueg://134.100.15.237 /bef/ui/ A([Q- Google

Copyright © 2006 Wade Alcorn (http:/ fwww.bindshell.net). All Rights Reserved. Version 0.2

Browser Exploitation
Framework

g BeEF

[help

Port Scanner Module

Targat
134.100.15.231
Port(s)

options
upcate
—————
[clear all results
Loaded

[YPOrIr.
Modiiles

21,22,80,8080,3306
timeout

500

result
scan

steal cliphaard)

port scanner

request

Zombies
R B134.100.15.232
®%134,100.15.54
@ ®134.100.15.231
© #34,100.15.233

IE retums less false positives
Results

. (gE=====

canning..
134.100.15.231:21 open
134.100.15.23 1:80 open
134.100.15.231:3306 open
134,100.15.231:22 open
134.100.15.231.5080 closed

CSRF / Session

» General problem:

Riding (IV)

» Session Riding vulnerabilities are NOT caused by

programming mistakes

» Completely correct code can be vulnerable
» The reason for Session Riding lies within http:
» No dedicated authentication credential

» State-changing GET requests

» JavaScript

"Preventing Session Riding”
is actually
“fixing the protocol”

Preventing CSRF attacks

» |nspect referrer headers

» HTTP protocol specifies a header indicating the URL of the
document from which current request originated

» S0 good.com can try to prevent CSRF attacks by
ignoring POST requests if the referrer is not good.com

» However...

» Referrer fields can be absent for legitimate reasons (e.g.,
new window; stripped by proxies)

Misconceptions Complete mediation

» Referrer checking
» Prevent CSRF attacks by requiring user re-

authentication
» Nof practical to do this all the time

= Some users prohibit referrers
-referrerless requests have to be accepted

~ = Techniques to selectively create http request without referrers exist:
» User will be come frustrated!

Method /Browser|lE 5|IE 6*|IE 7*|FF 1.07|FF 1.5|0 8(S 1.2 = ; [TRCSN ' i
NETA Rofroch < < Can require for ‘high-value’ transactions
Dynamic filled frame| X | X X X X X
Pop up window (regular)] X | X X
Pop up window (dynamically filled) X X
IE: Internet Explorer; FF: Firefox; S: Safari; O: Opera; *: [E 6 XPSP 2; **:. I[E 7 (Beta 2)
Table 1. Generating referrerless requests (“X” denotes a working method)

» Furthermore, referrers can be spoofed with Flash

Client-side protection Server-side protection

» Prevent CSRF attacks by allowing the legitimate server
to distinguish links in ‘fresh’ pages it serves, from links
embedded in attacker pages

- =» Add authenticated "action foken” as hidden field in
pages served; check token upon POST request

= Same-origin policy prevents 39 parties from reading the
foken

» (Assumes servers do not use GET requests for modifying
data)
= Browser plug-in that filters out POST requests unless
requesting site and target site satisfy same-origin
policy
= Might sfill filter out some legitimate requests

Action tokens

» Need a way to bind token to session

» At beginning of session, send cookie with random session-
id to user

» Compute MAC over the URL and the cookie (note that
cookie will be sent in any subsequent requests)

» This is potentially vulnerable to XSS attacks

» Aftacker injects script that steals user’s cookie and token

