
Secure Programming

Cross-Site Request

Forgery(CSRF)

Vulnerabities
Ahmet Burak Can

1

Agenda

�Web Application Authentication

�CSRF / Session Riding

�Server Side Countermeasures

�Client Side Protection

�Conclusion

2

The Browser “Same Origin”

Policy

3

bank.com

blog.net

XHR

XHR

document, cookies

TAG

TAG

JS

Explicit Authentication

� The authentication credentials are communicated by

the web application

� URL rewriting: Session token is included in every URL

� Form based session tokens

Immune against CSRF

(actually only almost immune)

4

Implicit Authentication

� Automatically executed by the browser

� Cookies

� http authentication (Basic, Digest, NTLM)

� IP based schemes

� Client side SSL

Potentially vulnerable to CSRF

5 Session management with

cookies
� After the authentication form the server sets a cookie at the client’s

browser

� As long as this cookie is valid, the client’s requests are treated as
authorized

6

HTTP authentication (Basic, Digest)

Client Server
� The client requests a restricted

resource

� The server answers with a “401

Unauthorized” response

� This causes the client’s browser

to demand the credentials

� The client resends the request

� The user’s credentials are

included via the “Authorization”

header

� Every further request to that

authentication realm contains

the credentials automatically

IP based authentication8

Firewall

Intranet webserver

Client side SSL authentication

� The client web browser possesses a X.509 certificate that was signed by an
authority that is trusted by the web application

� Initial authentication:

� The client has to prove his identity

� For this reason, the web server demands a valid signature from the client

� � “SSL handshake”

� Depending on the browser, the user may or may not confirm the initial handshake by
entering a password (only once)

� If the handshake was successful, a SSL session is established between the client’s

browser and the web server

� As long as the SSL session is valid, all request to the web server are transmitted
using the negotiated credentials

9 CSRF / Session Riding

� Exploits implicit authentication mechanisms

� Known since 2001

� CSRF a.k.a. CSRF a.k.a. “Session Riding” (a.k.a. “Sea Surf”)

� Unknown/underestimated attack vector (compared to
XSS or SQL injection)

� The Attack:

� The attacker creates a hidden http request inside the

victim’s web browser

� This request is executed in the victim’s authentication
context

10

www.bank.com

CSRF / Session Riding (II)11

Cookie: auth_ok

www.bank.com

CSRF / Session Riding (II)12

Cookie: auth_ok

www.attacker.org

GET transfer.cgi?am=10000&an=3422421

Cross-Site Request Forgery13

bank.com

attacker’s post at blog.net

Go to Transfer Assets

https://bank.com/fn?param=1Select FROM Fund

https://bank.com/fn?param=1Select TO Fund

https://bank.com/fn?param=1Select Dollar Amount

https://bank.com/fn?param=1Submit Transaction

https://bank.com/fn?param=1Confirm Transaction

https://bank.com/fn?param=1

How Does CSRF Work?

� Tags

<iframe src=“https://bank.com/fn?param=1”>

<script src=“https://bank.com/fn?param=1”>

� Autoposting Forms

<body onload="document.forms[0].submit()">

<form method="POST" action=“https://bank.com/fn”>

<input type="hidden" name="sp" value="8109"/>

</form>

� XmlHttpRequest

� Subject to same origin policy

14

Credentials Included15

bank.com

blog.net

https://bank.com/fn?param=1

JSESSIONID=AC934234…

CSRF / Session Riding (III)

� Cause: The web application does not verify that state
changing request were created “within” the web
application

� Attack methods:

� Forging GET requests:

� Image tag with SRC attribute that points to a state changing
URL

� The URL might be obfuscated by a http redirect

� Forging POST request:

� Attacker creates an IFRAME (or a pop-up window)

� The frame is filled with a HTML form

� This form is submitted via JavaScript

16

Cross-domain interactions

� Recall…

� <script src=http://good.com/foo></script> in bad page
would cause legitimate script to run in context of bad
page!

� Instead, malicious page can initiate a POST request to

legitimate page, with arbitrary parameters

� Due to the way web authentication is handled (i.e., using
a cached credential), http requests will look as if they
come from the legitimate user if they are logged in when

they view the malicious page

17 CSRF Example18

1. Alice’s browser loads page from bad.com

2. Script runs causing evilform to be submitted with a

password-change request by loading
www.good.com/update_pwd with attacker-specified

field

3. Browser sends authentication cookies to good server. Honest
user’s password is changed to badpwd!

<form method="POST" name="evilform" target="hiddenframe"

action="https://www.good.com/update_pwd">

<input type="hidden" id="password" value=“badpwd">

</form>

<iframe name="hiddenframe" style="display: none">

</iframe> <script>document.evilform.submit();</script>

evilform

Example 1: Breaking

Applications

� Vulnerable: digg.com

� digg.com’s frontpage is
determined by the number
of “diggs” a certain story

gets

� Using CSRF a webpage was
able to cause the victim’s
browser to “digg” an
arbitrary URL

� The demo page “digged”
itself

19 Example 2: Causing

Financial Loss

� Vulnerable: Netflix.com

� Add movies to your rental queue

� Add a movie to the top of your
rental queue

� Change the name and address
on your account

� Change the email address and
password on your account (i.e.,
takeover your account)

� Cancel your account
(Unconfirmed/Conjectured)

20

Example 3: Owning the

Server

� Vulnerable: Wordpress 2.02

� Wordpress’ theme editor was
susceptible to CSRF

� Wordpress theme-files can be
php-files

� Via CSRF an attacker could

modify those files to contain
arbitrary php-code

21 Example 4: Exploring the

Intranet

� Vulnerable: (most) intranet

webservers

� By dynamically including
external images and using

timed JavaScript events, a
malicious website can,
e.g.:

� Portscan the intranet

� Fingerprint existing web

servers and installed
applications

� � “JavaScript Malware”

22

CSRF / Session Riding (IV)

� General problem:

� Session Riding vulnerabilities are NOT caused by
programming mistakes

� Completely correct code can be vulnerable

� The reason for Session Riding lies within http:

� No dedicated authentication credential

� State-changing GET requests

� JavaScript

“Preventing Session Riding”
is actually

“fixing the protocol”

23 Preventing CSRF attacks

� Inspect referrer headers

� HTTP protocol specifies a header indicating the URL of the
document from which current request originated

� So good.com can try to prevent CSRF attacks by

ignoring POST requests if the referrer is not good.com

� However…

� Referrer fields can be absent for legitimate reasons (e.g.,
new window; stripped by proxies)

24

Misconceptions

� Referrer checking

� Some users prohibit referrers
�referrerless requests have to be accepted

� Techniques to selectively create http request without referrers exist:

� Furthermore, referrers can be spoofed with Flash

25 Complete mediation

� Prevent CSRF attacks by requiring user re-

authentication

� Not practical to do this all the time

� User will be come frustrated!

� Can require for ‘high-value’ transactions

26

Client-side protection

� (Assumes servers do not use GET requests for modifying

data)

� Browser plug-in that filters out POST requests unless

requesting site and target site satisfy same-origin

policy

� Might still filter out some legitimate requests

27 Server-side protection

� Prevent CSRF attacks by allowing the legitimate server
to distinguish links in ‘fresh’ pages it serves, from links
embedded in attacker pages

� Add authenticated “action token” as hidden field in
pages served; check token upon POST request

� Same-origin policy prevents 3rd parties from reading the
token

28

Action tokens

� Need a way to bind token to session

� At beginning of session, send cookie with random session-
id to user

� Compute MAC over the URL and the cookie (note that
cookie will be sent in any subsequent requests)

� This is potentially vulnerable to XSS attacks

� Attacker injects script that steals user’s cookie and token

29

