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document, cookies

Explicit Authentication

» The authentication credentials are communicated by
the web application

» URL rewriting: Session token is included in every URL

®» Form based session tokens

Immune against CSRF

(actually only almost immune)




Implicit Authenfication

» Automatically executed by the browser

» Cookies

http authentication (Basic, Digest, NTLM)

IP based schemes
Client side SSL

Potentially vulnerable to CSRF

Session management with
cookies

» After the authentication form the server sets a cookie at the client’s
browser

» Aslong as this cookie is valid, the client’s requests are treated as
authorized
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Client side SSL authentication CSRF / Session Riding

» The client web browser possesses a X.509 certificate that was signed by an

authority that is trusted by the web application » Exploits implicit authentication mechanisms
» Known since 2001

» CSRF a.k.a. CSRF a.k.a. “Session Riding” (a.k.a. “Sea Surf”)

» |nitial authentication:
» The client has to prove his identity
= For this reason, the web server demands a valid signature from the client

» > “SSL handshake”

» Unknown/underestimated attack vector (compared to
XSS or SQL injection)

» The Attack:

» The attacker creates a hidden http request inside the
victim's web browser

» Depending on the browser, the user may or may not confirm the initial handshake
entering a password (only once)

» |f the handshake was successful, a SSL session is established between the clit

browser and the web server
= This request is executed in the victim's authentication

» Aslong as the SSL session is valid, all request to the web server are fransmitte context

using the negotiated credentials

CSRF / Session Riding (ll)
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Cross-Site Request Forgery

bank.com

Confirm Transaction
https://bank.com/fn?param=1

Ll e attacker’s post at blog.net

How Does CSRF Worke

= Tags

<img src=“https://bank.com/fn?param=1">

am=1">

<iframe src=“https://bank.com/fn?pa

RN

<script src=“https://bank.com/fn?para

» Autoposting Forms
<body onload="document.forms[0].submit () ">

<form method="POST" action=“https://bank.com/fn”>

<input type="hidden" name="sp" value="8109"/>

</form>

» XmlHttpRequest

= Subject to same origin policy

Credentials Included
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CSRF / Session Riding (lll)

» Cause: The web application does not verify that state
changing request were created “within” the web
application

- » Attack methods:

» Forging GET requests:

» |mage tag with SRC attribute that points to a state changing
URL

» The URL might be obfuscated by a http redirect

» Forging POST request:
» Attacker creates an IFRAME (or a pop-up window)
» The frame is filled with a HTML form

®» This form is submitted via JavaScript




Cross-domain interactions

» Recall...

» <script src=http://good.com/foo></script>in bad page
would cause legitimate script to run in context of bad

page!
» |nstead, malicious page can initiate a POST request to
legitimate page, with arbifrary parameters

= Due to the way web authentication is handled (i.e., using
a cached credential), http requests will look as if they
come from the legitimate user if they are logged in when
they view the malicious page

CSRF Example

(s,
S

<form method="POST" name="evilform" target="hiddenframe"
action="https://www.good.com/update pwd">
<input type="hidden" id="password" value=“badpwd">
</form>
<iframe name="hiddenframe" style="display: none">
</iframe> <script>document.evilform.submit () ;</script>

1. Alice’s browser loads page from bad.com

2. Script runs causing evilform to be submitted with a
password-change request by loading
www.good.com/update_pwd with attacker-specified
field

3. Browser sends authentication cookies to good server. Honest
user’'s password is changed to badpwd!

Example 1: Breaking
Applications

Digye's bloy
rs. blogs pot.com B2 [Cl- coogle

» Vulnerable: digg.com

06 || = FLrG? | NEXT BLOG»

» digg.com'’s frontpage is
determined by the number
of "diggs” a certain story
gets

/

Digger's blog

Tuesday, June 06, 2006

= Using CSRF a webpage was

able to cause the victim's How to defeat digg.com
browser to “digg” an
arbitrary URL ... an introduction to session riding

= The demo page "digged e e i e O vl
itself and maybe you'll find out some interesting things about session

riding.

Example 2: Causing
Financial Loss

» Vulnerable: Netflix.com

» Add movies to your rental queue WETFLIY ==
» Add a movie to the Top of your The Best Way to Rent Movies
rental queue SR

» Change the name and address R
on your account

» Change the email address and
password on your account (i.e.,
takeover your account)

» Cancel your account
(Unconfirmed/Conjectured)




Example 3: Owning the

Server

= Vulnerable: Wordpress 2.02

» Wordpress' theme editor was
usceptible fo CSRF

Wordpress theme-files can be
php-files

= Via CSRF an aftacker could
modify those files to contain
arbitrary php-code
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Howdy, hacker. [Sign Out, My Accourt]

Dasnboard Write Manage Links Presentation Plugins Users Options Import

hemes [IYRYYCNCN Header image and Color

Select therve to adit: | WordPress Defaule [#) (select )

Browsing header.php

‘WordPress Default’
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Stylesheet

sidebar

Example 4: Exploring the

Intfranet

» Vulnerable: (most) infranet
webservers

» By dynamically including
external images and using
fimed JavaScript events, a
malicious website can,
e.g.

= Portscan the intranet

= Fingerprint existing web
servers and installed
applications

=» - “JavaScript Malware”

Browser Exploit Frameworik
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CSRF / Session

» General problem:

Riding (IV)

» Session Riding vulnerabilities are NOT caused by

programming mistakes

» Completely correct code can be vulnerable
» The reason for Session Riding lies within http:
» No dedicated authentication credential

» State-changing GET requests

» JavaScript

"Preventing Session Riding”
is actually
“fixing the protocol”

Preventing CSRF attacks

» |nspect referrer headers

» HTTP protocol specifies a header indicating the URL of the
document from which current request originated

» S0 good.com can try to prevent CSRF attacks by
ignoring POST requests if the referrer is not good.com

» However...

» Referrer fields can be absent for legitimate reasons (e.g.,
new window; stripped by proxies)




Misconceptions Complete mediation

» Referrer checking
» Prevent CSRF attacks by requiring user re-

authentication
» Nof practical to do this all the time

= Some users prohibit referrers
-referrerless requests have to be accepted

~ = Techniques to selectively create http request without referrers exist:
» User will be come frustrated!

Method /Browser|lE 5|IE 6*|IE 7*|FF 1.07|FF 1.5|0 8(S 1.2 = ; [TRCSN ' i
NETA Rofroch < < Can require for ‘high-value’ transactions
Dynamic filled frame| X | X X X X X
Pop up window (regular)] X | X X
Pop up window (dynamically filled) X X
IE: Internet Explorer; FF: Firefox; S: Safari; O: Opera; *: [E 6 XPSP 2; **:. I[E 7 (Beta 2)
Table 1. Generating referrerless requests (“X” denotes a working method)

» Furthermore, referrers can be spoofed with Flash

Client-side protection Server-side protection

» Prevent CSRF attacks by allowing the legitimate server
to distinguish links in ‘fresh’ pages it serves, from links
embedded in attacker pages

- =» Add authenticated "action foken” as hidden field in
pages served; check token upon POST request

= Same-origin policy prevents 39 parties from reading the
foken

» (Assumes servers do not use GET requests for modifying
data)
= Browser plug-in that filters out POST requests unless
requesting site and target site satisfy same-origin
policy
= Might sfill filter out some legitimate requests




Action tokens

» Need a way to bind token to session

» At beginning of session, send cookie with random session-
id to user

» Compute MAC over the URL and the cookie (note that
cookie will be sent in any subsequent requests)

» This is potentially vulnerable to XSS attacks

» Aftacker injects script that steals user’s cookie and token




