
Secure
Programming

Canonicalization

Ahmet Burak Can

1

Learning objectives

� Understand that there are many ways of representing
“addresses” and names, like a path to a file, but only
one standard way: the canonical one

� Understand how canonicalization issues can result in
directory traversal vulnerabilities

� Learn which OS-provided function calls help with
canonicalization issues

� Learn how to use chroot to defend against directory
traversal vulnerabilities

2

Canonicalization and
Directory Traversal: Outline

� Importance of Directory Traversal Vulnerabilities

� Canonical names

� BearShare example

� How to canonicalize

� Mitigating solutions (e.g., chroot)

� Lab

3

Importance

� Directory traversal vulnerabilities are very common, but
not as much as buffer overflows

� They may allow remotely writing or reading files, depending.
These may be executable files, or be secret or confidential
documents.

� Canonicalization issues are more complex in Windows,
due to the many ways of naming a file

� short name (8.3)

� long name

� Unicode name

� Streams

� Trailing dots, forward slashes or backslashes

� etc...

4

Directory Traversal
Vulnerabilities

� Basic Idea: the characters ‘..’ mean “Go up a
directory”

� They can be inserted in file paths for

� Browsing

� Reading

� Execution

� Often a network services problem (e.g., ftp)

� Web sites

� Web-enabled applications

� Applications using networks

5

Synonyms

� “..” (“dot dot”) attacks

� Also “...” on Windows

� Windows 95, 98

� Goes up two directories

6

Definition of Canonical

� Canonical means *the* standard form or
representation of something

� Canonicalization: "process by which various equivalent
forms of a name can be resolved to a single, standard
name – the so-called canonical name.”

� Usually the simplest form

� Without symlinks

� “/usr/../home/student” is the same as
“/home/student”

� /home/student is the canonical path

7

Question

� Given that there is a symbolic link:

/home/alfred/sss -> /home/myhomebiz/accounting/spreadsheets/

What is the canonical path to:
“/home/bob/../mary/../alfred/.//sss/may.xls” ?

a) /home/alfred/sss/may.xls

b) /home/myhomebiz/accounting/spreadsheets/may.xls

c) /home/alfred/may.xls

8

The Problem

� If you forbid access to /home/private but enable
access to /home/public, what do you do with a
request for:

� “/home/public/../private” ?

� “/home/PRIVATE” ? (This one is dependent on the file
system)

9

Answer

� “/home/public/../private” should of course be
forbidden, but many programs are fooled by the
presence of “..” and equivalent character encodings
and obfuscations.

� Programs filtering out only “..” are still vulnerable.

10

Mismatched Object and
Access Control

� The HFS+ file system is case insensitive.
“/home/PRIVATE” == “/home/private”

� Apache directory access control is case sensitive, as it
is designed for UFS (UNIX File System). It thinks that
“/home/PRIVATE” is different from “/home/private”.

� Join the two together and you have a
canonicalization (“directory traversal”) vulnerability,
even though both systems alone are correct.

� Fixed since

11

Url Vulnerabilities

� protocol://server/path

� Example:

� http://www.host.com/path

� path contains ‘..’; what do you do?

12

Symantec Example

� CVE-1999-0842

� Symantec Mail-Gear 1.0 web interface server allows
remote users to read arbitrary files via a .. (dot dot)
attack.

13

Example With Bad Patches
(Instructive)

� BearShare

� Peer-to-peer file sharing service

� Also had a vulnerable web server component!

14

BearShare 2.2.2

� CVE-2001-0368

� http://vulnerable:6346/........../windows/win.ini

� This would download the win.ini file from the windows
directory.

� This is a classic Directory Traversal vulnerability.

15

Wrong Way to Patch

� First attempt to patch, Apr 30 2001

� They forbid ‘{/\}.(.)*’ (unencoded) in the path

� Why is it bad?

16

BearShare 4.05 Vulnerability

� Attempt to fix previous exploit by filtering bad stuff

� New exploit:

� http://127.0.0.1:6346/%5c..%5c..%5c..%5cwindows%5cwin.
ini

� %5c == ‘\’

� This passes the filter

� Then it translates into:
http://127.0.0.1:6346/\..\..\..\windows\win.ini

� Returning the win.ini file.

17

BearShare 4.06

� http://127.0.0.1:6346/%5c..%5c..%5c..%5cwindows%5c
win%2eini

�%2e is "."

� Also returns the win.ini file.

� What went wrong twice?

� Filter is a black list instead of white list

� Filter is applied before canonicalization

� Good time to remind of "How to obscure any URL"

� http://www.pc-help.org/obscure.htm

18

Other Character Encoding
Example

� CAN-2004-0072

� Directory traversal vulnerability in Accipiter Direct
Server 6.0 allows remote attackers to read arbitrary
files via encoded \.. (backslash .., "%5c%2e%2e")
sequences in an HTTP request.

� Hundreds of similar vulnerabilities

19

Double Encoding

� CVE-2001-0333

� Directory traversal vulnerability in IIS 5.0 and earlier
allows remote attackers to execute arbitrary
commands by encoding .. (dot dot) and "\"
characters twice.

� How many in-series decoders are there?

� Are there any after the access control decisions have
been made?

20

First
Decoder Access

Control

Second
Decoder

Data

Repeated Mistake

� Attempt to cleanse ‘..’ and things that have certain
meanings (‘.ini’) directly from input

� These attempts to do semantic validation before
resolving encoding and canonicalization will fail

� Too many ways to represent the same thing

21

How to Canonicalize Paths

� Goal: Find the absolute name of a file which contains no ".", ".."
components nor any repeated path separators (/) or symlinks

� UNIX:

� realpath (obsolescent but may be only available function)

� Requires buffer allocation ahead of time

� Buffer should be of length PATH_MAX

� What if PATH_MAX is undefined because a system has no limit on path
length?

� canonicalize_file_name (new)

� Allocates the needed memory

22

Canonical Names

� PHP:

� string realpath (string path)

� Windows:

� GetFullPathName

� Java:

� File.getCanonicalPath() or File.getCanonicalFile()

23

Differences Between UNIX
and Windows

� UNIX:

� All but the last component of pathname must exist when
realpath() is called.

� Windows:

� "This function does not verify that the resulting path and
file name are valid or that they see an existing file on the
associated volume."

� Need to standardize on either short or long file names

� Long names are prefered

24

Things That Look Like Files But
Aren't

� Devices (Windows, UNIX)

� Special cases (Linux)

� /proc/self contains information reflecting the state of the
process accessing the directory.

� Sockets
Unix domain sockets can be bound to locations in

the file system. While these cannot be opened like
normal files, they can still be used to create things like
lock files.

� NTFS Alternate Data Streams

� Named Pipes and Mailslots

� UNC (\\UNC\share\name\here)

25

Solutions Without Code

� Chroot "jail"

� Confine a process to a specific directory

� Independent microsphere

� self-contained

� Derivatives

� FreeBSD "jail"

� Solaris "zones"

� Subdomain (Immunix)

� Applies an access control list to file references

� No duplication of files

� Windows doesn't have equivalent (closest functionality is
virtual machines)

26

Chroot

� Chroot changes the filesystem "root".

� The applications in a chroot jail can't use files outside
the visible root of the filesystem

� They are "jailed" down in a subdirectory

� Example

� chdir("/foo/bar");

chroot("/foo/bar");

� chroot [-u -user] [-g -group] [-G -group,group,...]
newroot [command]

27

Chroot Can Fail

� Doesn’t work against root

� Is service running as root?

� If not, is there a vulnerability that yields root access?

� Yes -> “Get Out of Jail”

� http://www.bpfh.net/simes/computing/chroot-
break.html

� Important to run with lowers privileges

� Special users

� FreeBSD "jail" claims to have closed those loopholes

28

Lab

� Write an application that will:

� Take as input two command-line arguments

1) a path to a file or directory

2) a path to a directory

� Output the canonicalized path equivalent for the first
argument.

� If the path would not refer to a real path (UNIX semantics as
described before), issue a warning.

� Decide whether or not the first argument refers to a file
inside the second argument

� Think of the second argument as a filesystem root for a server
of some kind (web, FTP)

29

Lab notes

� Use canonicalize_file_name

� http://www.delorie.com/gnu/docs/glibc/libc_279.html

� Canonical path resolution always goes left to right

30

