
Secure Programming

Integer Overflows

Ahmet Burak Can

Hacettepe University

1

Learning objectives

� Know the internal representation of integers

� Be able to determine when an integer overflow can
occur

� Understand the consequences of integer overflows

2

Integers

� Fixed number of bytes

� Signed and unsigned

� Types:

� Char

� "char" is different from "unsigned char" and "signed char"

� Short

� Int

� Long

� Extended types

� uint_least16_t (integer of at least 16 bits)

� etc...

3

Internal Representation

� Signed Short:

� -1 is FFFF

� 32767 is 7FFF

� -32768 is 8000

� If a = -32768, what is -a?

� -(-32768) is -32768!

� if a = 32767, what is a+1?

� 32767 + 1 is -32768

4

Internal Representation,
Unsigned

� Unsigned Short:

� 65535 is FFFF

� 0 is 0000

� If a = 0, what is a-1?

� 0-1 is 65535

� if a = 65535, what is a+1?

� 65535 +1 = 0!

5

Integer Overflow Example*

#include <stdio.h>

int main(void){
int 1;
short s;
char c;

1 = 0xdeadbeef;
s = 1;
c = 1;

printf("l = 0x%x (%d bits)\n", l, sizeof(l) * 8);
printf("s = 0x%x (%d bits)\n", s, sizeof(s) * 8);
printf("c = 0x%x (%d bits)\n", c, sizeof(c) * 8);

return 0;
}

6

* https://www.securecoding.com/blog/integer-overflow-attack-and-prevention/

The output:

Silent Signed to Unsigned
Conversions

� No warning, or compiler warning was ignored

� What happens when you pass a negative number to
a function expecting an unsigned integer?

� void *malloc(size_t size);

7

Malloc(0) Attack Scenario

� Overflow in the size calculations can be engineered to
allocate no memory

� Malloc(0) is legal, but returned value OS-dependent

� Sun: returns pointer to the "arena"

� Pointer to buffer of size 0, or a minimum size

� Program happily trashes the arena, or heap

� "Fandango on core"

8

