
17.2.2016

1

Secure Programming

Shell and Environment Flaws

Ahmet Burak Can

Hacettepe University

1

Learning objectives

� Understand how shells interpret commands, launch
and provide environments for processes

� Understand how setuid or LocalSystem scripts and
programs are risky

� Understand how environments affect the security of
applications

� Understand how configuration issues affect the
security of applications

2

Operations Management
and Best Practices

� Shells

� Environment

� Configuration

� Logging

� Calling External Programs

3 Shells: Outline

� What is a shell?

� Relative path vulnerabilities and mini-lab

� Substitutions

� Setuid scripts and programs

4

17.2.2016

2

What is a shell?

� Launches programs, including other shells

� Provides

� Capabilities to applications

� A user interface

� Windows Explorer shell

� Replacement Windows shells

� Geoshell

� Aston, etc...

� Norton Desktop for Windows

� UNIX shells

� bash

� tcsh, etc...

5 Capabilities provided by
Windows shells

� Custom url handlers

� Clicking on a url "outlook://" starts outlook

� Buffer overflow when handling custom urls of improperly
removed applications (CVE-2002-0070; MS02-014)

� UI preferences

� Buffer overflow when handling desktop.ini (CVE-2003-0306;
MS03-27)

� Path resolution and handling

� Relative shell path vulnerability in Windows 2000 and NT
(CVE-2000-0663)

� Run Explorer.exe trojan from another user

� Various means of launching other programs

� Buffer overflows (CVE-2002-1327, CVE-2003-0503)

6

Capabilities of UNIX shells

� Substitutions

� Filename substitution (wildcard expansion, a.k.a.
globbing)

� Command substitution

� bash and tcsh interpret backticks in names (CVE-1999-1383)

� Arbitrary command execution in GhostView handling of file
names (CVE-2002-1569) (BID 5840)

� Several other applications invoke shell capabilities!

� Environment variables

� PATH search variable

� File system path resolution

� Launching applications

7 Relative Path Vulnerabilities

� Relative paths trigger a search for the actual file. Is it:

� In the current directory?

� In some other directory specified by the PATH
environment variable?

� Which one of the above two should be done first?

� Insecure default in Windows (see next slide)

� Common misconfiguration of UNIX accounts

� Mini-Lab

8

17.2.2016

3

Windows PATH

� Different behavior depending on version of Windows

� Old behavior: current directory was searched first for
DLLs

� New behavior: search all system locations first

� XP SP1

� Windows 2003

� More secure, but...

� The current directory is searched even if "." is not in
your PATH, and searched before your PATH!

� Insecure default

� You may not get the DLL (dynamically loaded library)
you wanted!

9 Windows Filename
Extensions

� What if you didn't specify the extension?

� The environment variable PATHEXT decides the order
(.com, .exe, .bat, .cmd, ...)

� What if PATHEXT is changed by a malicious user, so a
trojan would run instead?

� Other ambiguities

� Trailing dot, slash in filename

� Long vs short name

� Solution: Use the absolute path and complete name

10

Shell Mini-Lab (Windows)

� Open a command prompt

� Type “command” within the window you opened. Which
shell is running now? Now type “exit”

� Type “cd“ or “set %CD%”. What is the current directory?

� Type “set PATH". What is the meaning of the output?

� Create a cmd file named “cmd.cmd":

� echo @echo gotcha > cmd.cmd

� Compare the execution of “cmd" and ".\cmd". What is
the difference, if any?

� Type "set PATH=%PATH%;.". What effect does it have
when you run “cmd”?

� Create a batch file named “cmd.bat”:

� echo @echo hello > cmd.bat

11 Shell Mini-Lab (Windows
continued)

� What happens when you run “cmd” now?

� How can you change the behavior?

� Compare the results of running “cmd” with the results of
running “%SYSTEMROOT%\system32\cmd”.

� What kind of path is “%SYSTEMROOT%\system32\cmd”?

� Type “echo %SYSTEMDRIVE%”

� Type “cd %SYSTEMROOT%\system32”

� Compare the results of running “cmd” and “.\cmd”.

12

17.2.2016

4

Shell Mini-Lab (UNIX)

� Get into the UNIX shell provided for the class

� Type "/bin/sh". Which shell is running now?

� Type "pwd". What is the current directory?

� Type "echo $PATH". What is the meaning of the output?

� Create a script named "ls":

� echo "echo gotcha" > ls

� Allow execution by running "chmod a+rx ls"

� Compare the execution of "ls" and "./ls". Why is the
output different?

� Type "PATH=.:/bin:/sbin:/usr/bin:/usr/sbin".
What is the effect when you run “ls”?

13 Shell Mini-Lab (UNIX
continued)

� Compare the execution of "ls" with "/bin/ls".

� What kind of path is "/bin/ls"?

� Type "cd /bin"

� Compare the results of running "ls" and "./ls".

14

Question

� A "relative path" is relative to:

 a) Your home directory

 b) The current working directory

 c) The root (top) directory (e.g. “C:\” or “/”)

15 Question

� Why is the PATH environment variable important?

 It specifies the order of directories in which a shell looks
for a file, when a relative path has been specified

� Why is the PATHEXT environment variable important?

16

17.2.2016

5

Question

� In a UNIX shell, when an application runs
"./filename", which file is run?

 a) The file of the same name ("filename") in the same
directory as the application

 b) The file of the same name ("filename") in the current
working directory of the application

 c) The file of the same name ("filename") in a directory
specified by the PATH environment variable

17 Question

� In a Windows shell, when an application runs "filename",

which file is run? Choose the best answer.

a) The file of the same name ("filename") in a directory
specified by the PATH environment variable

b) The file of the same name ("filename") in the current working
directory of the application

c) The first file in the current directory that matches the first
extension in the PATHEXT environment variable

d) The file of the same name ("filename") in the same directory
as the application

18

Question

� Which is more secure to run?

a) ./filename or .\filename

b) filename

c) /bin/filename or c:\WINNT\system32\filename.exe

• Comment: Because ./filename refers to the current path, it
has a level of indirection that can be exploited.

• Always specify absolute paths unless impossible.

• Explicitly set the PATH and any other important environment
variables.

19 Substitutions: Outline

� What are substitutions?

� Vulnerability due to substitutions

� Mini-Lab 2: A shell exploit

20

17.2.2016

6

What can be substituted?

� Filename substitutions (wildcards, a.k.a. globbing)

� Directory stack substitution

� Command substitution

� Subshells

� Other substitutions

� UNIX Example: ls /var/*/*log*

� /var/log/boot.log

� /var/log/prelink.log

� /var/log/Xorg.0.log

� /var/run/klogd.pid

� /var/run/syslogd.pid

21
GNU ‘bash’ prompt parsing vulnerability
CVE-1999-0491, BID 119

� UNIX back-tick (command substitution)

� Typing "`command`" on the command line executes the
command, even if it should have been an argument for
another command

� Mallory runs: mkdir "\`command\`"

� Create directory with a command inside back-ticks

� Alice runs: cd "\`command\`"

� Mallory’s command executed by Alice

� This could happen when moving around directories with
symlinks

� Code injection due to full shell interpretation of directory
name

22

Basic Concepts of UNIX Access
Control: Users, Groups, Files,
Processes
� Each user has a unique UID

� Users belong to multiple groups

� Processes are subjects

� associated with uid/gid pairs, e.g., (euid, egid), (ruid, rgid),
(suid, sgid)

� Objects are files: each file has the following information

� owner

� group

� 12 permission bits

� read/write/execute for user, group, and others,

� suid, sgid

23 Basic Permissions Bits on Files
(Non-directories)

� Read bit controls reading the content of a file

� i.e., the read system call

� Write bit controls changing the content of a file

� i.e., the write system call

� Execute controls loading the file in memory and
execute

� i.e., the execv system call

24

17.2.2016

7

The Three Sets of Permission
Bits

� UNIX classifies three sets of permission bits for files:

� user, group, other

� When a user wants to access a file:

� if the user is the owner of a file, then the r/w/x bits for
owner apply

� otherwise, if the user belongs to the group the file belongs
to, then the r/w/x bits for group apply

� otherwise, the r/w/x bits for others apply

25 UNIX Permission Bits for Files

� Example:

$ ls –l

-rwxr-xr--+ 2 abc akd 4096 May 3 11:54 a.txt

� Permissions for a.txt:

� User has r/w/x permissions

� Group has r/x permissions

� Others has r permission

26

Process User ID Model in
Modern UNIX Systems

� Each process has two user IDs

� real user ID (ruid): owner of the process

� effective user ID (euid): user ID which affects the most
access control decisions

� and two group IDs

� real group ID: original group of the process

� effective group ID: group ID which affects the most
access control decisions

27 The Need for suid/sgid Bits

� System integrity requires more than controlling who
can write, but also how it is written

� Some operations are not modeled as files and require
user id = 0

� halting the system

� bind/listen on “privileged ports” (TCP/UDP ports below
1024)

� changing password

28

17.2.2016

8

Mini-Lab 2: UNIX
An exploit to gain shell access
� Most exploits are aimed at giving an attacker shell access

� "Execute arbitrary code" usually means starting a shell

� Next, a back door is installed.

� Warning: your account could get compromised by doing this
mini-lab

� don't perform the "chmod" operations (comment them out)

� instructor will demo some student solutions in a throw-away account

� *or* don't use a university account

� In this lab, you will create a back door with a setuid "C"
program

� setuid scripts are now disabled by default in many OSes

29 Mini-Lab 2: UNIX
Answers

� Create a file named /tmp/ls with the following

content:

cp /bin/sh /tmp/.xxsh

chmod u+s,o+x /tmp/.xxsh

rm ./ls

ls $*

� When a victim runs ”ls” command in /tmp
directory, what would happen?

30

Discussion

� Windows: Services that run as System

� Change the account associated with a service ("Log On
As" setting), from LocalSystem to a lower privilege
account (you need to configure that account carefully,
or use LocalService or NetworkService)

� Sometimes, users can't figure out why their software
doesn't work so they make it run with an administrator
account, which is even worse!

� Principle of psychological acceptability: "This is too hard,
so let's open it and grant it all privileges so it works!"

31 Discussion

� UNIX: This is mitigated by configuring services to run as
"nobody" or separate accounts with limited privileges
for each service

� How can you configure OS services to mitigate the
consequences of a vulnerability?

� Hint: Apply the principle of least privilege

32

17.2.2016

9

Question

� Why is a secure configuration difficult to achieve?

a) Operating systems are complex

b) Users will break security (if they can) to get their
services to run

c) There are many services to secure

d) All of the above

33 Environment: Outline

� What is the environment?

� Can you trust the environment?

� Environment pollution attacks

34

What is the environment?

� File System

� Correct permissions/ACLs on files

� Partitions

� Operating System, sandboxes

� Services

� Accounts

� Correct account permissions

� Environment variables

� e.g., PATH

� Other defaults

� e.g., umask (for new file default permissions)

� Logging facilities

35 Trusting the Environment?

� As the developer of an application, you (should) know
how to secure the environment

� Configure files with the correct permissions during
installation

� Umask: Create files with correct permissions

� Environment variables are typically under the control
of untrusted users

36

17.2.2016

10

Environment Pollution

� A program can get values from the environment

� Some variables are used automatically

� Win32 process hooking, dll injection, Microsoft research detours
library

� UNIX

� LD_LIBRARY_PATH, LD_PRELOAD

� Function interception (library interposition)

� Before you get control!

� An attacker can influence environment:

� For code injection attacks

� To create buffer overflows

� To bypass access controls

� Denial of service (crashes for various reasons)

37 Example: Comments on PHP
Poisoning

� PHP was designed for power and ease-of-use in CGI
programming, not security

� CGI parameters automatically become variables
within PHP scripts

� Attacker can control logical flow of program

� Option turned off by default in new versions of PHP

� Used to be ON by default

38

Example PHP Poisoning

� PHP: Variables inside the program can be initialized with
values supplied by the remote client (register_globals
option)!

� <php

if ($username == $allowed && $password == $secret)

$authorized = “yes”;

...

if ($authorized == “yes”) {

...

}

?>

� Enter on the address bar of the browser
“url?authorized=yes” to bypass authentication

39 Configuration: Outline

� Default accounts

� Hard-coded passwords and backdoors

40

17.2.2016

11

Configuration Best Practice

� All dangerous configuration options should be turned
off by default (SD3 – secure by design, secure by
default, secure in deployment)

� The developer should know what options are
dangerous

� Customer doesn't know any better so the installation
and configuration program should provide
guarantees

� Exceptions should provide warnings

41 Discussion Sample Answers

� What can your software do instead of using accounts
with default passwords?

� Functionality could be blocked until accounts are set

properly (with appropriate notices so customer doesn't

think that the program or equipment is broken)

� If the default account can't be avoided, most

functionality could be disabled until the default account

is removed by the administrator.

42

Hard-Coded Passwords

� Open design security principle

� Hard-coded passwords are a failure in the application
of that principle

� revealed password may result in a catastrophic failure

� OEM requirements and ease-of-use may be at odds
with this principle

43 Calling External Programs

� Calling paradigms

� Shell

� Special calls

� Custom environment

� File descriptors

44

17.2.2016

12

UNIX “system " Call

int system(const char *command);

� Program and arguments are interpreted by a shell!

� very difficult to model and sanitize

� Also available on Windows!

� Exec calls

� execle allow the separation of path, arguments, and
environment

� Fewer risks

int execle(const char *path, char *const
argv[], char *const envp[]);

45 Question

int execv(const char *path, char *const argv[]);

int execlp(const char *file, const char *arg0, ..., const

char *argn, (char *)0);

int execvp(const char *file, char *const argv[]);

� execlp and execvp search the PATH like a shell does if the

specified path is not absolute. Are they:

 a) As safe as execv

 b) Less safe than execv

 c) More safe than execv

46

Question

� Rank the following calls in order of safety (high to low):

� system

� execle

� execv

� execvp

a) execv, execvp, execle, system

b) execle, execv, execvp, system

c) execvp, execle, execv, system

47 File Descriptors

� UNIX: forked and exec’ed processes inherit file

descriptors

� Remember the principle of complete mediation

� Close all unneeded file descriptors (before calling
exec)

48

