Chapter 3: Process Concept

OEerating sttem ConceEts — 9th Edition Silberschatz, Galvin and Gagne ©2013

Chapter 3: Process Concept

Operating System Concepts — 9* Edition 3.2

Process Concept

Process Scheduling

Operations on Processes

Interprocess Communication

Examples of IPC Systems
Communication in Client-Server Systems

Silberschatz, Galvin and Gagne ©2013

Objectives

m Tointroduce the notion of a process -- a program in execution, which
forms the basis of all computation

B To describe the various features of processes, including scheduling,
creation and termination, and communication

® To explore interprocess communication using shared memory and
message passing

B To describe communication in client-server systems

Operating System Concepts — 9" Edition 3.3 Silberschatz, Galvin and Gagne ©2013

Process Concept

m An operating system executes a variety of programs:
e Batch system — jobs
o Time-shared systems — user programs or tasks
m Textbook uses the terms job and process almost interchangeably
m Process — a program in execution; process execution must progress in sequential fashion
m Multiple parts
e The program code, also called text section
e Current activity including program counter, processor registers
e Stack containing temporary data
» Function parameters, return addresses, local variables
e Data section containing global variables
e Heap containing memory dynamically allocated during run time
m Program is passive entity stored on disk (executable file), process is active
e Program becomes process when executable file loaded into memory
m Execution of program started via GUI mouse clicks, command line entry of its name, etc
m One program can be several processes
e Consider multiple users executing the same program
Operating System Concepts — 9* Edition 3.4 Silberschatz, Galvin and Gagn;-©2013

Process in Memory

max
stack
heap
data
text
0
L oy
’.“»““._.:
Operating System Concepts — 9" Edition 3.5 Silberschatz, Galvin and Gagne ©201

Memory Layout of a C Program

#include <stdio.h>

Process State

B As a process executes, it changes state
e new: The process is being created
e running: Instructions are being executed
e waiting: The process is waiting for some event to occur
e ready: The process is waiting to be assigned to a processor
e terminated: The process has finished execution

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9 Edition 37

high argc, agrv #include <stdlib.h>
memory
stack
L I
heap
uninitialized K
data h
initialized for(i = 0; i < 5; i++)
data values(i] = i;
mekr)nv:ry text) return 0;
P 5
— /'\,,-,"‘
Operating System Concepts — 9t Edition 3.6 Silberschatz, Galvin and Gagne ©2013
=
b i ¥ -
el Diagram of Process State
admitted interrupt terminated
; scheduler dispatch ;
IO or event completion P I/O or event wait
P 5
— /'\,,-,"‘

Operating System Concepts — 9t Edition 3.8 Silberschatz, Galvin and Gagne ©2013

(o
Process Control Block (PCB)
Information associated with each process process state
(also called task control block)
® Process state — running, waiting, etc process numbe £
m Program counter — location of instruction to next program counter
execute
m CPU registers — contents of all process-centric
registers reg isters
m CPU scheduling information- priorities, scheduling
queue pointers
® Memory-management information — memory allocated memeory limits
to the process
® Accounting information — CPU used, clock time list of open files
elapsed since start, time limits
m /O status information — I/O devices allocated to
.) e 8 @
process, list of open files
Operating System Concepts — 9% Edition 3.9 Silberschatz, Galvin and Gagn:@zm‘;

e

»’ Process Representation in Linux

B Represented by the C structure task_struct
pid t pid; /* process identifier */
long state; /* state of the process */

unsigned int time slice /* scheduling information */

struct task struct *parent; /* this process’s parent */
struct list head children; /* this process’s children */

struct files struct *files; /* list of open files */

struct mm struct *mm; /* address space of this process */

N NN
struct task_struct struct task_struct struct task_struct
process information process information s s process information
. . .
k- 1 h oAl

current

(currently executing proccess)

Operating System Concepts — 9* Edition 3.0

Silberschatz, Galvin and Gagne ©2013

Process Scheduling

Maximize CPU use, quickly switch processes onto CPU for time sharing

Process scheduler selects among available processes for next
execution on CPU

B Maintains scheduling queues of processes
e Job queue — set of all processes in the system

e Ready queue - set of all processes residing in main memory,
ready and waiting to execute

e Device queues — set of processes waiting for an 1/0 device

e Processes migrate among the various queues

Operating System Concepts — 9" Edition 3.1 Silberschatz, Galvin and Gagne ©2013

Ready Queue And Various
I/0O Device Queues

queue header PCB; PCB.,
ready head —— =T * T =
queus tail . registars | registers
5 1 .
B .
mag head =—a
tape = 1 =
unit 0 tal =
meg head ——=
uT'lalf? tail . PCB, ' PCB. PCBs
/ —_— " B =
disk head 4
PCB;
terminal |__bead > =
unit 0 | tail |
- =
/'\’._“'.

Operating System Concepts — 9* Edition 342

Silberschatz, Galvin and Gagne ©2013

e

| Representation of Process Scheduling

B Queuing diagram represents queues, resources, flows

: ready queue CPU

I/O queue H 11O request %—
time slice
expired
child fork a
executes child [
interrupt wait for an
occurs interrupt

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9 Edition 3413

Schedulers

=
——
;ﬁ. - - - -
~/ Addition of Medium Term Scheduling
® Medium-term scheduler can be added if degree of multiple programming
needs to decrease
o Remove process from memory, store on disk, bring back in from disk
to continue execution: swapping
swap in partially executed swap out
swapped-out processes
ready queue { CPU } end
m IO waiting
\I‘EJ/ queues
A 1.
Operating System Concepts — 9t Edition 3.15 Silberschatz, Galvin and Gagn;‘@zm‘;

m Long-term scheduler (or job scheduler) — selects which processes should be brought
into the ready queue
m Short-term scheduler (or CPU scheduler) — selects which process should be executed
next and allocates CPU
e Sometimes the only scheduler in a system
m Short-term scheduler is invoked very frequently (milliseconds) = (must be fast)
m Long-term scheduler is invoked very infrequently (seconds, minutes) = (may be slow)
® The long-term scheduler controls the degree of multiprogramming
® Processes can be described as either:
e |/O-bound process — spends more time doing I/O than computations, many short
CPU bursts
e CPU-bound process — spends more time doing computations; few very long CPU
bursts
m Long-term scheduler strives for good process mix e
£
Operating System Concepts — 9t Edition 314 Silberschatz, Galvin and Gagne"©201-3‘
l*-:
L oy H
redl Context Switch
® When CPU switches to another process, the system must save the state of
the old process and load the saved state for the new process via a context
switch
m Context of a process represented in the PCB
m Context-switch time is overhead; the system does no useful work while
switching
e The more complex the OS and the PCB -> longer the context switch
m Time dependent on hardware support

Operating System Concepts — 9* Edition 3.6

e Some hardware provides multiple sets of registers per CPU -> multiple
contexts loaded at once

Silberschatz, Galvin and Gagne ©2013

:L | CPU Switch From Process to Process

process P, operating system process P;

interrupt or system call

executing Jl
T save state into PCB,,
.
.

pidle interrupt or system call

save state into PCB;

.
.
J reload state from PCB,,
executing U

reload state from PCB, i

<

idle

executing

idle

Operating System Concepts — 9 Edition 347

Silberschatz, Galvin and Gagne ©2013

N & Process Creation

m Parent process create children processes, which, in turn create other
processes, forming a tree of processes

m Generally, process identified and managed via a process identifier (pid)

m Resource sharing options
e Parent and children share all resources
e Children share subset of parent’ s resources
e Parent and child share no resources

m Execution options
e Parent and children execute concurrently
e Parent waits until children terminate

Operating System Concepts — 9* Edition 3.8 Silberschatz, Galvin and Gagne ©2013

A Tree of Processes in Linux

Khel per
pid = 6

ps
pid = 9298

Operating System Concepts — 9 Edition 3.19

pid = 200

pdflush

Silberschatz, Galvin and Gagne ©2013

-

p—

e & Process Creation (Cont.)

m Address space
e Child duplicate of parent
e Child has a program loaded into it

m UNIX examples
e fork () system call creates new process
e exec() system call used after a fork () to replace the process’ memory space with a new

program
£
_//'\»...L ;.|
e
Operating System Concepts — 9* Edition 3.20 Silberschatz, Galvin and Gagne ©2013

-

- 1:.5 Semantics of fork() and exec()

Difference between fork() and exec() system calls:
m The fork()

e create an exact copy of a running process

e created copy is the child process, the running process is the parent process.
m exec() system

e replace a process image with a new process image.

e no concept of parent and child processes in exec() system call.

In fork() parent and child processes are executed at the same time.

In exec() the control does not return to where the exec function was called, it will
execute the new process.

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9 Edition 3.21

-

- 17-4 fork () Sample-2

int mainQ)
{
int pl, p2;
pl = forkQ); /*forkl*/
p2 = forkQ; /*fork2*/
printf (“%d\n”, pl + p2);
}
PID=12
pl =11 fork2
p2=0
PID=13
pl=0
p2 =0
Operating System Concepts — 9t Edition 3.23 Silberschatz, Galvin and Gagn;ézm-;

- J:J fork () Sample -1

int mainQ
{
int pl; fork

pl = fork(; /*forkl*/

PID=11
printf (“%d\n”, pl); p1=0
> Ty
g 1
Operating System Concepts — 9t Edition 3.22 Silberschatz, Galvin and Gagne ©2013

-

H:J fork () ve exec() Sample -3

/* programl.c */
main(Q)
{

int i, pid;

pid = fork(Q;
if(pid==0)
execlp("./program2","program2","3" ,NULL) ;

for (i=0; i<4; i++)
printf("parent\n");

o |

Operating System Concepts — 9* Edition 3.24 Silberschatz, Galvin and Gagne ©2013

L'-"ﬁié'_;_::_}'f"ork() ve exec () Kullanimi: prog2

/* program2.c */
main(int argc, char *argv[])
{

int i, son, pid;

son atoi(argv[1l]); /* convert char to integer */
fork(Q;

pid
if (pid==0)

execlp("./program3","program3™,"2" ,NULL);

for (i=0; i<son; i++)
printf("child\n");
}

e~

Silberschatz, Galvin and Gagne ©201

L=

Operating System Concepts — 9" Edition 3.25

=

“w::l fork () ve exec() Kullanimi

exec(“./program2”)

exec (“./program3”)
PROG 3

e~

- IR
Operating System Concepts — 9t Edition 3.27 Silberschatz, Galvin and Gagne ©2013

‘”"-'f?;#’fork() ve exec () Kullanimi: prog3

/* program3.c */
main(int argc, char *argv[])
{

int i,son;

son = atoi(argv[1]);

for (i=0; 1i<son; i++)
printf("grandchild\n");

e

: b
Operating System Concepts — 9t" Edition 3.26 Silberschatz, Galvin and Gagne ©2013

=%
e,

-

o
e & Use of fork and exec

m UNIX examples
e fork () system call creates new process

e exec () system call used after a fork () to replace the process’ memory space with a new
program

parent —»("\pm = m:g
= “) P oY
child (pid =0) mfciL \a._ﬂj_./

parent (pid > 0) e
K—"(wail() _)—' el resunes

A

Silberschatz, Galvin and Gagne ©201

©

Operating System Concepts — 9t" Edition 3.28

e

| C Program Forking Separate Process

Operating System Concepts — 9 Edition 3.29

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()
pid.t pid;

/* fork a child process */
pid = fork(Q);

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

return 0;

Silberschatz, Galvin and Gagne ©2013

=

7 Creating a Separate Process via Windows API

#include <stdio.h>
#include <windows.h>

int main(VOID)
{

STARTUPINFO si;
PROCESS_INFORMATION pi;

/* allocate memory */
ZeroMemory (ksi, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (¥pi, sizeof(pi));

/* create child process %/
if (!CreateProcess(NULL, /* use command line */
"C:\\WINDOWS\\systen32\\nspaint.exe", /* command */
NULL, /* don’t inherit process handle */

NULL, /* don’t inherit thread handle */

FALSE, /* disable handle inheritance */

0, /*
NULL,
NULL,

no creation flags */
/* use parent’s environment block */
/% use parent’s existing directory */

&si,
&pi))

fprintf(stderr, "Create Process Failed");
return -1;
F
/* parent will wait for the child to complete */
WaitForSingleObject (pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */

CloseHandle(pi.hProcess) ; f“‘“\\
CloseHandle(pi.hThread) ; Eaeedd
pd
) A
Operating System Concepts — 9*" Edition 3.30 Silberschatz, Galvin and Gagne ©2013

Process Termination

Operating System Concepts — 9 Edition 3.31

Process executes last statement and then asks the operating
system to delete it using the exit () system call.

e Returns status data from child to parent (via wait())
e Process’ resources are deallocated by operating system

Parent may terminate the execution of children processes using
the abort () system call. Some reasons for doing so:

e Child has exceeded allocated resources
e Task assigned to child is no longer required

e The parent is exiting and the operating systems does not
allow a child to continue if its parent terminates

Silberschatz, Galvin and Gagne ©2013

Process Termination

Operating System Concepts — 9* Edition 332

Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children must
also be terminated.

e cascading termination. All children, grandchildren, etc. are
terminated.

e The termination is initiated by the operating system.

The parent process may wait for termination of a child process by
using the wait () system call. The call returns status information
and the pid of the terminated process

pid = wait(&status);
If no parent waiting (did not invoke wait ()) process is a zombie
If parent terminated without invoking wait , process is an orphan

Silberschatz, Galvin and Gagne ©2013

I
"Multiprocess Architecture — Chrome Browser

® Many web browsers ran as single process (some still do)

e If one web site causes trouble, entire browser can hang or crash
m Google Chrome Browser is multiprocess with 3 categories

e Browser process manages user interface, disk and network /0

e Renderer process renders web pages, deals with HTML, Javascript, new one for each website
opened

» Runs in sandbox restricting disk and network I/0, minimizing effect of security exploits
e Plug-in process for each type of plug-in

| B OO Gwiiey-operating system o 3 BBC - Homepage & The New York Times - Breal ¢/ & Google Chrome - The web £
€3 Cc 0 le.cMchrome intl/en/mallk /download htm[?brand=CRKZ AR §
N +

\?chrome mmn Features “Engiish %

Each tab represents a separate process

Operating System Concepts — 9" Edition 3.33 Silberschatz, Galvin and Gagne ©2013

Interprocess Communication

® Processes within a system may be independent or cooperating
m Cooperating process can affect or be affected by other processes, including sharing data
m Reasons for cooperating processes:

e Information sharing

e Computation speedup

e Modularity

e Convenience
m Cooperating processes need interprocess communication (IPC)
® Two models of IPC

e Shared memory

e Message passing

Operating System Concepts — 9* Edition 334 Silberschatz, Galvin and Gagne ©2013

Communications Models

process A — |: process A
- process B shared memory j
process B
message queue
L m0|m1 |m2|m3| |mn P
kernel
kernel

(@) (b)

Operating System Concepts — 9" Edition 3.35 Silberschatz, Galvin and Gagne ©201

pa—t .
7 Cooperating Processes

m Independent process cannot affect or be affected by the execution of another process

m Cooperating process can affect or be affected by the execution of another process

m Advantages of process cooperation
e Information sharing
e Computation speed-up
e Modularity
e Convenience

53

Operating System Concepts — 9* Edition 3.36 Silberschatz, Galvin and Gagne ©2013

Lo [atd . - .
#" " Interprocess Communication — Message Passing
m Mechanism for processes to communicate and to synchronize their actions
m Message system — processes communicate with each other without resorting to shared
variables

m |PC facility provides two operations:
e send(message) — message size fixed or variable
® receive(message)

m If Pand Q wish to communicate, they need to:
e establish a communication link between them
e exchange messages via send/receive

m Implementation of communication link
e physical (e.g., shared memory, hardware bus)
e logical (e.g., direct or indirect, synchronous or asynchronous, automatic or explicit

buffering)
Operating System Concepts — 9 Edition 3.37 Silberschatz, Galvin and Gagne“@zm‘;

pa— . .
- Implementation Questions

® How are links established?

® Can alink be associated with more than two processes?

® How many links can there be between every pair of communicating processes?

® Whatis the capacity of a link?

m |s the size of a message that the link can accommodate fixed or variable?

® |s a link unidirectional or bi-directional?

Silberschatz, Galvin and Gagne ©2013

Direct Communication

® Processes must name each other explicitly:
e send (P, message) — send a message to process P
e receive(Q, message) —receive a message from process Q

® Properties of communication link
e Links are established automatically
e Alink is associated with exactly one pair of communicating processes
o Between each pair there exists exactly one link

e The link may be unidirectional, but is usually bi-directional

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9 Edition 3.39

q_“l;m H » u
- Indirect Communication

m Messages are directed and received from mailboxes (also referred to as ports)
e Each mailbox has a unique id
e Processes can communicate only if they share a mailbox

m Properties of communication link
e Link established only if processes share a common mailbox
e Alink may be associated with many processes
e Each pair of processes may share several communication links
e Link may be unidirectional or bi-directional

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 3.40

-

o , S
- Indirect Communication

® Operations
e create a new mailbox
e send and receive messages through mailbox
e destroy a mailbox

® Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

Operating System Concepts — 9 Edition 3.41

Silberschatz, Galvin and Gagne ©2013

Indirect Communication

® Mailbox sharing
e P, P, and P; share mailbox A
e P, sends; P, and P;receive
o Who gets the message?

m Solutions
e Allow a link to be associated with at most two processes
e Allow only one process at a time to execute a receive operation

o Allow the system to select arbitrarily the receiver. Sender is notified who
the receiver was.

Operating System Concepts — 9t Edition 3.42

Silberschatz, Galvin and Gagne ©2013

-

|

g7 Synchronization

Message passing may be either blocking or non-blocking
Blocking is considered synchronous

e Blocking send -- the sender is blocked until the message is
received

e Blocking receive -- the receiver is blocked until a message
is available

® Non-blocking is considered asynchronous

o Non-blocking send -- the sender sends the message and
continue

o Non-blocking receive -- the receiver receives:
e A valid message, or
e Null message
m Different combinations possible
e If both send and receive are blocking, we have a rendezvous

Operating System Concepts — 9 Edition 343

Silberschatz, Galvin and Gagne ©2013

Lo
~$%7 Producer- Consumer : Shared Memory

PRODUCER:

message next produced;

while (true) {
/* produce an item in next produced */

send (next_produced) ;

CONSUMER :

message next_consumed;

while (true) {
receive (next_consumed)

/* consume the item in next_consumed */

LA
-
Operating System Concepts — 9* Edition 3.44 Silberschatz, Galvin and Gagne ©2013

. *:‘l Buffering

® Queue of messages attached to the link; implemented in one of three ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

Operating System Concepts — 9" Edition 3.45 Silberschatz, Galvin and Gagne ©2013

-

. *:4 Examples of IPC Systems - POSIX

m POSIX Shared Memory

e Process first creates shared memory segment
shm_fd = shm open(name, O CREAT | O RDRW, 0666) ;

e Also used to open an existing segment to share it
e Set the size of the object

ftruncate (shm f£fd, 4096) ;
e Now the process could write to the shared memory

sprintf (shared memory, "Writing to shared memory");

L)
4

Operating System Concepts — 9* Edition 3.46 Silberschatz, Galvin and Gagne ©2013

557 IPC POSIX Producer

#include <stdio h»
#include <stlib.h>
#include =string h»
#include <fentl.he
#include <sys/shm h>
#include <sys/stat.hs

int main()

/= the size (in bytes) of shared memory cbject */
const int SIZE 4086;

/= name of the chared memery chjsct */

const char *mame = “0§";

/% strings written to shared memery /

const char *message 0 = "Hello";

const char *message-1 = "World|®;

/= shared memory file descriptor »/
int shm fd;
/= pointer to shared memory obect */
void sptr;

/+ create the shared memory object =/
shm £d = sho open(nase, 0.CREAT | ORDRW, 0866);

/+ configure the size of the ahared memory object #/
ftruncate(shm fd, BIZE);

/+ memory map the shared memory cbject */
ptr = nmap(0, SIZE, PROT WRITE, MAP SHARED, sha fd, 0):

/* write to the shared memery object =/
aprintf (ptr, "%s" ,message 0);

ptr += strlen(nesaage 0);

sprintf (ptr, "¥s" ,message 1);

ptr += strlen(mesaage 1);

return 0;

}
Operating System Concepts — 9" Edition 3.47 Silberschatz, Galvin and Gagne ©201

“ J-"l IPC POSIX Consumer

#include <stdio.h=
#include <stlib.h>
#include <fentl.h>
#include <sys/shm.h>
#include <sys/stat.h=

int main{)

/* tha size (in bytes) of shared memory object =/
const int SIZE 4096;

/% name of the shared memory object =/

const char #npame = "035";

/* shared memory file descriptor */

int shm fd;

J* pointer to shared memory cbect =/

void =ptr;

/» cpen the shared memory cbject */
shm fd = sha open{name, O ADONLY, D666);

/* memory map the shared memory cbject =/
ptr = mmap(0, SIZE, PROT READ, MAP_SHARED, shm fd, 0);

/% read from the shared memory object */
printf ("%s"®, (char *)ptr);

#* remove the shared memory object =/
shm unlink(nama};

turn 0; <y
) return _/m‘
W,

Operating System Concepts — 9* Edition 3.48 Silberschatz, Galvin and Gagne ©2013

Pipes

® Acts as a conduit allowing two processes to communicate
H [ssues:
e |s communication unidirectional or bidirectional?
® In the case of two-way communication, is it half or full-
duplex?
o Must there exist a relationship (i.e., parent-child) between
the communicating processes?
e Can the pipes be used over a network?

® Ordinary pipes — cannot be accessed from outside the
process that created it. Typically, a parent process creates a
pipe and uses it to communicate with a child process that it
created.

® Named pipes — can be accessed without a parent-child
relationship.

Operating System Concepts — 9 Edition 3.49

Silberschatz, Galvin and Gagne ©2013

55 UNIX Pipe Example - 1

#include <stdio.h>
#include <unistd.h>
#define MSGSIZE 16
char* msgl = "hello, world #1"; OUTPUT:
char* msg2 = "hello, world #2";

hello, world #1
hello, world #2

int main(Q) {
char inbuf[MSGSIZE];
int p[2], i;

if (pipe(p) < 0)
exit(l);

write(p[1], msgl, MSGSIZE); /* write pipe */
write(p[1], msg2, MSGSIZE);

for (i =0; i <2; i+$) {
read(p[0], inbuf, MSGSIZE); /* read pipe */
printf("% s\n", inbuf);

}
return 0; y
3 — .
Operating System Concepts — 9" Edition 3.51 Silberschatz, Galvin and Gagne ©2013

Ordinary Pipes

Ordinary Pipes allow communication in standard producer-consumer style
Producer writes to one end (the write-end of the pipe)

Consumer reads from the other end (the read-end of the pipe)

Ordinary pipes are therefore unidirectional

Require parent-child relationship between communicating processes

parent child
1d{0) fd{1) fd{0) fdi1)

L '
L . ().J

L

® Windows calls these anonymous pipes
m See Unix and Windows code samples in textbook _ 3

Operating System Concepts — 9* Edition 3.50 Silberschatz, Galvin and Gagne ©2013

. 1:4 ‘UNIX Pipe Example (Parent-Child) - 2

#define MSGSIZE 16
char* msgl = "hello, world #1";
char* msg2 = "hello, world #2";

OUTPUT:
int mainQ{
char inbuf[MsGSIZE]; hello, world #1
int p[2], pid, nbytes; hello, world #2
if (pipeCp) < 0 Finished reading!
exit(1);
if ((pid = fork() > 0) { /*Parent process*/
write(p[1], msgl, MSGSIZE);
write(p[1], msg2, MSGSIZE);
close(p[1]); /*Close write end, so child does not wait*/
wait(NULL) 5
} else { /*child process*/
close(p[1D); /*Close write end in child, it will not be used*/
while ((nbytes = read(p[0], inbuf, MSGSIZE)) > 0)
printf("% s\n", inbuf);
if (nbytes != 0)
exit(2);
printf("Finished reading!\n");
i Y
return 0; f \\'1
o
Operating System Concepts — 9™ Edition 3.52 Silberschatz, Galvin and Gagne ©2013

el

ot Named Pipes

® Named Pipes are more powerful than ordinary pipes

® Communication is bidirectional

® No parent-child relationship is necessary between the communicating processes

m Several processes can use the named pipe for communication

® Provided on both UNIX and Windows systems

m Code example:

Operating System Concepts — 9" Edition 3.53 Silberschatz, Galvin and Gagne ©2013

Communications in Client-Server Systems

m Sockets
® Remote Procedure Calls

Operating System Concepts — 9* Edition 354 Silberschatz, Galvin and Gagne ©2013

Sockets

m A socket is defined as an endpoint for communication

m Concatenation of IP address and port — a number included at
start of message packet to differentiate network services on a
host

® The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

m Communication consists between a pair of sockets

m Al ports below 1024 are well known, used for standard
services

m Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running

Operating System Concepts — 9" Edition 3.55 Silberschatz, Galvin and Gagne ©2013

Socket Communication

host X
(146.86.5.20)

socket
(146.86.5.20:1625)
web server

fama Ar an AL

Operating System Concepts — 9* Edition 3.56 Silberschatz, Galvin and Gagne ©2013

