
1

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 13: I/O Systems

13.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 13: I/O Systems

� I/O Hardware

� Application I/O Interface

� Kernel I/O Subsystem

� Transforming I/O Requests to Hardware Operations

� Performance

13.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

� Explore the structure of an operating system’s I/O subsystem

� Discuss the principles of I/O hardware and its complexity

� Provide details of the performance aspects of I/O hardware and software

13.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Overview

� I/O management is a major component of operating system design and operation

� Important aspect of computer operation

� I/O devices vary greatly

� Various methods to control them

� Performance management

� New types of devices frequent

� Ports, busses, device controllers connect to various devices

� Device drivers encapsulate device details

� Present uniform device-access interface to I/O subsystem

2

13.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

I/O Hardware

� Incredible variety of I/O devices

� Storage

� Transmission

� Human-interface

� Common concepts – signals from I/O devices interface with computer

� Port – connection point for device

� Bus - daisy chain or shared direct access

� Controller (host adapter) – electronics that operate port, bus, device

� Sometimes integrated

� Sometimes separate circuit board (host adapter)

� Contains processor, microcode, private memory, bus controller, etc

– Some talk to per-device controller with bus controller, microcode, memory,

etc

13.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Typical PC Bus Structure

13.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

I/O Hardware (Cont.)

� I/O instructions control devices

� Devices usually have registers where device driver places commands, addresses,

and data to write, or read data from registers after command execution

� Data-in register, data-out register, status register, control register

� Typically 1-4 bytes, or FIFO buffer

� Devices have addresses, used by

� Direct I/O instructions

� Memory-mapped I/O

� Device data and command registers mapped to processor address space

� Especially for large address spaces (graphics)

13.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Device I/O Port Locations on PCs (partial)

3

13.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Polling

� For each byte of I/O

1. Read busy bit from status register until 0

2. Host sets read or write bit and if write copies data into data-out register

3. Host sets command-ready bit

4. Controller sets busy bit, executes transfer

5. Controller clears busy bit, error bit, command-ready bit when transfer done

� Step 1 is busy-wait cycle to wait for I/O from device

� Reasonable if device is fast

� But inefficient if device slow

� CPU switches to other tasks?

� But if miss a cycle data overwritten / lost

13.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interrupts

� Polling can happen in 3 instruction cycles

� Read status, logical-and to extract status bit, branch if not zero

� How to be more efficient if non-zero infrequently?

� CPU Interrupt-request line triggered by I/O device

� Checked by processor after each instruction

� Interrupt handler receives interrupts

� Maskable to ignore or delay some interrupts

� Interrupt vector to dispatch interrupt to correct handler

� Context switch at start and end

� Based on priority

� Some nonmaskable

� Interrupt chaining if more than one device at same interrupt number

13.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interrupt-Driven I/O Cycle

13.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Intel Pentium Processor Event-Vector Table

4

13.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interrupts (Cont.)

� Interrupt mechanism also used for exceptions

� Terminate process, crash system due to hardware error

� Page fault executes when memory access error

� System call executes via trap to trigger kernel to execute request

� Multi-CPU systems can process interrupts concurrently

� If operating system designed to handle it

� Used for time-sensitive processing, frequent, must be fast

13.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Direct Memory Access

� Used to avoid programmed I/O (one byte at a time) for large data movement

� Requires DMA controller

� Bypasses CPU to transfer data directly between I/O device and memory

� OS writes DMA command block into memory

� Source and destination addresses

� Read or write mode

� Count of bytes

� Writes location of command block to DMA controller

� Bus mastering of DMA controller – grabs bus from CPU

� When done, interrupts to signal completion

13.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Six Step Process to Perform DMA Transfer

13.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Application I/O Interface

� I/O system calls encapsulate device behaviors in generic classes

� Device-driver layer hides differences among I/O controllers from kernel

� New devices talking already-implemented protocols need no extra work

� Each OS has its own I/O subsystem structures and device driver frameworks

� Devices vary in many dimensions

� Character-stream or block

� Sequential or random-access

� Synchronous or asynchronous (or both)

� Sharable or dedicated

� Speed of operation

� read-write, read only, or write only

5

13.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Kernel I/O Structure

13.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Characteristics of I/O Devices

13.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Characteristics of I/O Devices (Cont.)

� Subtleties of devices handled by device drivers

� Broadly I/O devices can be grouped by the OS into

� Block I/O

� Character I/O (Stream)

� Memory-mapped file access

� Network sockets

� For direct manipulation of I/O device specific characteristics, usually an escape / back

door

� Unix ioctl() call to send arbitrary bits to a device control register and data to

device data register

13.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Block and Character Devices

� Block devices include disk drives

� Commands include read, write, seek

� Raw I/O, direct I/O, or file-system access

� Memory-mapped file access possible

� File mapped to virtual memory and clusters brought via demand paging

� DMA

� Character devices include keyboards, mice, serial ports

� Commands include get(), put()

� Libraries layered on top allow line editing

6

13.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Network Devices

� Varying enough from block and character to have own interface

� Unix and Windows NT/9x/2000 include socket interface

� Separates network protocol from network operation

� Includes select() functionality

� Approaches vary widely (pipes, FIFOs, streams, queues, mailboxes)

13.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Clocks and Timers

� Provide current time, elapsed time, timer

� Normal resolution about 1/60 second

� Some systems provide higher-resolution timers

� Programmable interval timer used for timings, periodic interrupts

� ioctl() (on UNIX) covers odd aspects of I/O such as clocks and timers

13.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Blocking and Nonblocking I/O

� Blocking - process suspended until I/O completed

� Easy to use and understand

� Insufficient for some needs

� Nonblocking - I/O call returns as much as available

� User interface, data copy (buffered I/O)

� Implemented via multi-threading

� Returns quickly with count of bytes read or written

� select() to find if data ready then read() or write() to transfer

� Asynchronous - process runs while I/O executes

� Difficult to use

� I/O subsystem signals process when I/O completed

13.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Two I/O Methods

Synchronous Asynchronous

7

13.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Kernel I/O Subsystem

� Scheduling

� Some I/O request ordering via per-device queue

� Some OSs try fairness

� Some implement Quality Of Service (i.e. IPQOS)

� Buffering - store data in memory while transferring between devices

� To cope with device speed mismatch

� To cope with device transfer size mismatch

� To maintain “copy semantics”

� Double buffering – two copies of the data

� Kernel and user

� Varying sizes

� Full / being processed and not-full / being used

� Copy-on-write can be used for efficiency in some cases

13.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Device-status Table

13.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Sun Enterprise 6000 Device-Transfer Rates

13.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Kernel I/O Subsystem

� Caching - faster device holding copy of data

� Always just a copy

� Key to performance

� Sometimes combined with buffering

� Spooling - hold output for a device

� If device can serve only one request at a time

� i.e., Printing

� Device reservation - provides exclusive access to a device

� System calls for allocation and de-allocation

� Watch out for deadlock

8

13.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Error Handling

� OS can recover from disk read, device unavailable, transient write failures

� Retry a read or write, for example

� Some systems more advanced – Solaris FMA, AIX

� Track error frequencies, stop using device with increasing frequency of

retry-able errors

� Most return an error number or code when I/O request fails

� System error logs hold problem reports

13.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

I/O Protection

� User process may accidentally or purposefully attempt to disrupt normal

operation via illegal I/O instructions

� All I/O instructions defined to be privileged

� I/O must be performed via system calls

� Memory-mapped and I/O port memory locations must be protected too

13.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Use of a System Call to Perform I/O

13.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Kernel Data Structures

� Kernel keeps state info for I/O components, including open file tables, network

connections, character device state

� Many, many complex data structures to track buffers, memory allocation, “dirty”

blocks

� Some use object-oriented methods and message passing to implement I/O

� Windows uses message passing

� Message with I/O information passed from user mode into kernel

� Message modified as it flows through to device driver and back to

process

� Pros / cons?

9

13.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

UNIX I/O Kernel Structure

13.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

I/O Requests to Hardware Operations

� Consider reading a file from disk for a process:

� Determine device holding file

� Translate name to device representation

� Physically read data from disk into buffer

� Make data available to requesting process

� Return control to process

13.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Life Cycle of An I/O Request

13.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance

� I/O a major factor in system performance:

� Demands CPU to execute device driver, kernel I/O code

� Context switches due to interrupts

� Data copying

� Network traffic especially stressful

10

13.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Intercomputer Communications

13.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Improving Performance

� Reduce number of context switches

� Reduce data copying

� Reduce interrupts by using large transfers, smart controllers, polling

� Use DMA

� Use smarter hardware devices

� Balance CPU, memory, bus, and I/O performance for highest throughput

� Move user-mode processes / daemons to kernel threads

13.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Device-Functionality Progression

