Basic Ciphers

- **Shift Cipher**
 - Brute-force attack can easily break

- **Substitution Cipher**
 - Frequency analysis can reduce the search space

- **Vigenere Cipher**
 - Kasiski test can reveal the length of key

- **Enigma Machine**
 - Reveal of the internals of the machine and the capture of the daily codebook

- **How perfect secrecy can be satisfied?**
One Time Pad

• Basic Idea: Extend Vigenère cipher so that the key is as long as the plaintext
 ◦ Key is a random string and is used only once
 ◦ Encryption is similar to Vigenère
 ◦ Cannot be broken by frequency analysis or Kasiski test

Plaintext $P = (p_1 \ p_2 \ \ldots \ p_n)$
Key $K = (k_1 \ k_2 \ \ldots \ k_n)$
Ciphertext $C = (p_1 \ p_2 \ \ldots \ p_n)$

$E_k(X) = (p_1+k_1 \ p_2+k_2 \ \ldots \ p_n+k_n) \mod m$
$D_k(Y) = (c_1-k_1 \ c_2-k_2 \ \ldots \ c_n-k_n) \mod m$
The Binary Version of One-Time Pad

- Plaintext space = Ciphertext space = Keyspace = \{0, 1\}^n
- Key is chosen randomly
- For example:
 - Plaintext 11011011
 - Key 01101001
 - Ciphertext 10110010
Security of One Time Pad

• How good is the security of one time pad?
 ◦ The key is random, so ciphertext is completely random
 ◦ Any plaintext can correspond to a ciphertext with the same length

• A scheme has perfect secrecy if ciphertext provides no “information” about plaintext
 ◦ C. E. Shannon, 1949

• One-time pad has perfect secrecy
 ◦ For example, suppose that the ciphertext is “Hello”, can we say any plaintext is more likely than another plaintext?
Importance of Key Randomness

- For perfect secrecy, key-length ≥ msg-length
- What if a One-Time Pad key is not chosen randomly, instead, texts from, e.g., a book is used.
 - this is not One-Time Pad anymore
 - this does not have perfect secrecy and can be broken
- The key in One-Time Pad should never be reused.
 - If it is reused, it is insecure!
 - How to send the key to the receiver of the ciphertext?

- These requirements make One Time Pad impractical.
Block Ciphers

• Block Cipher = Symmetric key encryption = Conventional Encryption
• Block ciphers can be considered as substitution ciphers with large block size (≥ 64 bits)
• Map n-bit plaintext blocks to n-bit ciphertext blocks (n: block size).
 ◦ For n-bit plaintext and ciphertext blocks and a fixed key, the encryption function is a one-to-one function
Block Ciphers

- **Block size**: in general larger block sizes mean greater security.
- **Key size**: larger key size means greater security (larger key space).
- **Number of rounds**: multiple rounds offer increasing security.
- **Encryption modes**: define how messages larger than the block size are encrypted, very important for the security of the encrypted message.
A Simple Block Cipher: Hill Cipher

- The key k is a matrix. The message is considered as vectors. Encryption and decryption operations are matrix multiplication operations
 - Encryption: $C = k \cdot P \pmod{26}$
 - Decryption: $P = k^{-1} \cdot C \pmod{26}$
- Example: The plaintext is `CAT` converted to numeric values, namely 2, 0, 19.

- If the key is
 $\begin{pmatrix} 6 & 24 & 1 \\ 13 & 16 & 10 \\ 20 & 17 & 15 \end{pmatrix}$

- Encryption: $\begin{pmatrix} 6 & 24 & 1 \\ 13 & 16 & 10 \\ 20 & 17 & 15 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 19 \end{pmatrix} \equiv \begin{pmatrix} 31 \\ 216 \\ 325 \end{pmatrix} \equiv \begin{pmatrix} 5 \\ 8 \\ 13 \end{pmatrix} \pmod{26}$
- $C=`FIN`
An Insecure Block Cipher

- Hill cipher is insecure since it uses linear matrix operations.
 - Each output bit is a linear combination of the input bits
 - An insecure block cipher uses linear equations
- Hill Cipher can easily be broken by known-plaintext attack
 - An attacker knowing a plaintext and ciphertext pair can easily figure out the key matrix.
Feistel Network

- A Feistel Network is fully specified given
 - the block size: $n = 2^w$
 - number of rounds: d
 - d round functions $f_1, f_2, \ldots, f_d : \{0,1\}^w \rightarrow \{0,1\}^w$
 - Each f function is an SP cipher

- Used in DES, IDEA, RC5, and many other block ciphers.
- Not used in AES
Feistel Network

- **Encryption**
 \[
 \begin{align*}
 L_1 &= R_0 \\
 R_1 &= L_0 \oplus f_0(R_0, K_0) \\
 L_2 &= R_1 \\
 R_2 &= L_1 \oplus f_1(R_1, K_1) \\
 &\vdots \\
 L_d &= R_{d-1} \\
 R_d &= L_{d-1} \oplus f_{d-1}(R_{d-1}, K_{d-1})
 \end{align*}
 \]

- **Decryption**

 \[
 \begin{align*}
 R_{d-1} &= L_d \\
 L_{d-1} &= R_d \oplus f_{d-1}(R_{d-1}, K_{d-1}) \\
 &\vdots \\
 R_0 &= L_1 \\
 L_0 &= R_1 \oplus f_0(L_1, K_0)
 \end{align*}
 \]
History of Data Encryption Standard (DES)

- 1967: Feistel at IBM
 - Lucifer: block size 128; key size 128 bit
- 1972: NBS asks for an encryption standard
- 1975: IBM developed DES (modification of Lucifer)
 - block size 64 bits; key size 56 bits
- 1975: NSA suggests modification
- 1977: NBS adopts DES as encryption standard in (FIPS 46-1, 46-2).
- 2001: NIST adopts Rijndael (AES) as replacement to DES.
DES Features

- Features:
 - Block size = 64 bits
 - Key size = 56 bits
 - Number of rounds = 16
 - 16 intermediary keys, each 48 bits
DES Structure

64-bit plaintext

Initial permutation

Round 1

K₁

Permutation choice 2

Left circular shift

Round 2

K₂

Permutation choice 2

Left circular shift

Round 16

K₁₆

Permutation choice 2

Left circular shift

Inverse initial permutation

64-bit ciphertext

56-bit key

Permutation choice 1
Details of DES Rounds

- An initial permutation is applied on the plaintext \(\text{IP}(x) = L_0 R_0 \)

- In each round:
 \(L_i = R_{i-1} \)
 \(R_i = L_{i-1} \oplus f(R_{i-1}, K_i) \)
Details of DES Rounds

- After the last round
 \[y = \text{IP}^{-1}(R_{16}L_{16}) \]
DES f Function
DES S-boxes

- S-boxes are the only non-linear elements in DES design.

B = \(b_1b_2b_3b_4b_5b_6\) \(\text{row}=b_1b_6\) \(\text{column}=b_2b_3b_4b_5\)

Example: \(B = 011011\) \(\text{row}=01\) \(\text{column}=1101\)

\[\begin{array}{cccccccccccccccc}
S_5 & 0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111 & 1000 & 1001 & 1010 & 1011 & 1100 & 1101 & 1110 & 1111 \\
00 & 0010 & 1100 & 0100 & 0001 & 0111 & 1010 & 1011 & 0110 & 1000 & 0101 & 0011 & 1111 & 1101 & 0001 & 1110 \\
01 & 1110 & 1011 & 0010 & 1100 & 0100 & 0111 & 1101 & 0001 & 0101 & 0000 & 1111 & 1010 & 0111 & 1001 & 1000 \\
10 & 0100 & 0010 & 0001 & 1011 & 1010 & 1011 & 0111 & 1000 & 1111 & 1001 & 1100 & 0101 & 0110 & 0011 & 0000 \\
11 & 1011 & 1000 & 1100 & 0111 & 0001 & 1110 & 0010 & 1101 & 0110 & 1111 & 0000 & 1001 & 1010 & 0100 & 0101 \\
\end{array}\]

\(C = 1001\)
DES Weak Keys

• **Weak keys**: keys make the same sub-key to be generated in more than one round.
 ◦ Result: reduce cipher complexity
 ◦ Weak keys can be avoided at key generation. DES has 4 weak keys:

 0000000 0000000
 0000000 FFFFFFF
 FFFFFFF 0000000
 FFFFFFF FFFFFFF

• **Semi-weak keys**: A pair of DES semi-weak keys is a pair \((K_1,K_2)\) with \(E_{K_1}(E_{K_2}(x))=x\)

• There are six pairs of DES semi-weak keys
Dictionary Attack to DES

- Even without having weak/semi-weak keys DES is vulnerable to **dictionary attacks**:
- Each plaintext may result in 2^{64} different ciphertexts, but there are only 2^{56} possible different key values.
- Given a PT/CT pair (M,C)
 - Encrypt the known plaintext M with all possible keys.
 - Keep a look up table of size 2^{56}.
 - Look up C in the table
Double DES

- DES uses a 56-bit key, this raised concerns about brute force attacks.
- One proposed solution: double DES.
- Apply DES twice using two keys, K1 and K2.
 - $C = E_{K2} [E_{K1} [P]]$
 - $P = D_{K1} [D_{K2} [C]]$
- This leads to a $2 \times 56 = 112$ bit key, so it is more secure than DES. Is it?
Meet-in-the-middle Attack

- Goal: given the pair (P, C) find keys K₁ and K₂.
- Based on the observation:
 \[
 C = E_{K_2} \left[E_{K_1} [P] \right] \\
 D_{K_2}[C] = E_{K_1}[P]
 \]
 1. Encrypt P with all \(2^{56}\) possible keys K₁
 - Store all pairs \((K_1, E_{K_1}[P])\), sorted by \(E_{K_1}[P]\).
 2. Decrypt C using all \(2^{56}\) possible keys K₂
 - For each decrypted result, check to see if there is a match \(D_{K_2}(C) = E_{K_1}(P)\). If a match is found, \((K_1, K_2)\) is a possible match.
 3. The attack has a higher chance of succeeding if another pair \((P', C')\) is available to the cryptanalysis.
Triple DES

- **Two key version is widely used and standard**
 - Key space is $56 \times 2 = 112$ bits
 - Encrypt: $C = E_{K1} [D_{K2} [E_{K1} [P]]]$
 - Decrypt: $P = D_{K1} [E_{K2} [D_{K1} [C]]]$

- **Three key version is possible but not standard**
 - Key space is $56 \times 3 = 168$ bits
 - Encrypt: $C = E_{K3} [D_{K2} [E_{K1} [P]]]$
 - Decrypt: $P = D_{K1} [E_{K2} [D_{K3} [C]]]$

- No known practical attack against it.
- Some protocols/applications use 3DES (such as PGP)
Encryption Modes

- Electronic Code Book (ECB)
- Cipher Block Chaining (CBC)
- Output Feedback Mode (OFB)
- Cipher Feedback Mode (CFB)
- Counter Mode (CTR)
Electronic Code Book (ECB)

- Message is broken into independent blocks of block_size bits.
 - Encryption: \(C_i = E_k[P_i] \)
 - Decryption: \(P_i = D_k[C_i] \)
Properties of ECB

- Deterministic: the same data block gets encrypted the same way.
 - This reveals patterns of data when a data block repeats.
- Malleable: reordering ciphertext results in reordered plaintext.
- Errors in one ciphertext block do not propagate.
- Usage: not recommended to encrypt more than one block of data.
Cipher Block Chaining (CBC)

- Cipher Block Chaining (CBC): next input depends upon previous output
 - Encryption: \(C_i = E_k [P_i \oplus C_{i-1}] \), with \(C_0 = IV \)
 - Decryption: \(P_i = C_{i-1} \oplus D_k [C_i] \), with \(C_0 = IV \)
Properties of CBC

- **Randomized encryption**: repeated text gets mapped to different encrypted data.
 - can be proven to be “secure” assuming that the block cipher has desirable properties and that random IV’s are used

- A ciphertext block depends on all preceding plaintext blocks
 - Sequential encryption, cannot use parallel hardware

- Errors in one block of ciphertext propagate to two blocks
 - one bit error in C_j affects all bits in M_j and one bit in M_{j+1}
Block Ciphers vs. Stream Ciphers

- A block cipher operates on blocks of fixed length.
- A stream cipher is a symmetric key cipher where plaintext bits are combined with a pseudorandom cipher bit stream (keystream), typically by an exclusive-or (xor) operation.
Output Feedback (OFB)

- Output feedback (OFB): construct a pseudorandom number generator (PRNG) to obtain a one time pad and XOR the message with the pad
 - Encryption: $X_0=IV$, $X_i = E_k[X_{i-1}]$, $C_i = P_i + X_i$
 - Decryption: $X_0=IV$, $X_i = E_k[X_{i-1}]$, $P_i = C_i + X_i$
Properties of OFB

- Randomized encryption
- Sequential encryption, but preprocessing possible
 - Generate the key before the message comes
- Error propagation limited
 - Only the changed bits are lost
- It can only be used as a stream cipher
Cipher Feedback (CFB)

- Cipher Feedback (CFB): the message is XORed with the feedback of encrypting the previous block
 - Encryption: $C_0=IV, C_i = E_k[C_{i-1}] + P_i$
 - Decryption: $C_0=IV, P_i = E_k[C_{i-1}] + C_i$
Counter Mode (CTR)

- Counter Mode (CTR): Another way to construct pseudo random number generator using DES
 - $X_i = E_k[\text{Counter}+i]$
 - $C_i = P_i \oplus X_i$
 - Sender and receiver share a counter value (does not need to be secret) and the secret key

\[\begin{align*}
\text{Counter} + 1 & \quad \text{Counter} + 2 & \quad \text{Counter} + 3 \\
K & \quad E & \quad K \\
P_1 + & \quad C_1 & \quad P_2 + \quad C_2 & \quad P_3 + \quad C_3
\end{align*}\]
Properties of CTR

- **Software and hardware efficiency**: different blocks can be encrypted in parallel.
- **Preprocessing**: the encryption part can be done offline and when the message is known, just do the XOR.
- **Random Access**: decryption of a block can be done in random order, very useful for hard-disk encryption.
- **Messages of Arbitrary Length**: ciphertext is the same length with the plaintext (i.e., no IV).