Chapter 2: System Structures

Operating System Concepts — 9t Edition Silberschatz, Galvin and Gagne ©2013

W»i
g“* Chapter 2: System Structures

Operating System Services

User Operating System Interface

System Calls

Types of System Calls

System Programs

Operating System Design and Implementation
Operating System Structure

Operating System Debugging

Operating System Generation

System Boot

‘~\‘
\ ,/3..,\\\,
k)

Operating System Concepts — 9t Edition 2.2 Silberschatz, Galvin and Gagne ©2013

:‘ /ﬁﬂmj . -
7 Objectives

m To describe the services an operating system provides to users,
processes, and other systems

m To discuss the various ways of structuring an operating system

® To explain how operating systems are installed and customized and
how they boot

Operating System Concepts — 9t Edition 2.3 Silberschatz, Galvin and Gagne ©2013

EN

X

g’r’ ,Wyni
| (L4

.

o Operating System Services

m Operating systems provide an environment for execution of programs and
services to programs and users

m One set of operating-system services provides functions that are helpful to the
user:

e User interface - Almost all operating systems have a user interface (Ul).

» Varies between Command-Line (CLI), Graphics User Interface (GUI),
Batch

e Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

e |/O operations - A running program may require 1/0O, which may involve a
file or an 1/O device

e File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

B,
W
A

Operating System Concepts — 9t Edition 2.4 Silberschatz, Galvin and Gagne ©2013

ij»;

o Y

ﬁ,,mv..,k

“»”/ Operating System Services (Cont.)

e Communications — Processes may exchange information, on the
same computer or between computers over a network

» Communications may be via shared memory or through
message passing (packets moved by the OS)

e Error detection — OS needs to be constantly aware of possible
errors

» May occur in the CPU and memory hardware, in 1/O devices, in
user program

» For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

» Debugging facilities can greatly enhance the user’ s and
programmer’ s abilities to efficiently use the system

—

Operating System Concepts — 9t Edition 2.5 Silberschatz, Galvin and Gagne ©2013

%77 Operating System Services (Cont.)

m Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

e Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

» Many types of resources - Some (such as CPU cycles, main memory,
and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code

e Accounting - To keep track of which users use how much and what kinds
of computer resources

e Protection and security - The owners of information stored in a multiuser
or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

» Protection involves ensuring that all access to system resources is
controlled

» Security of the system from outsiders requires user authentication,
extends to defending external 1/0O devices from invalid access attempts

» If a system is to be protected and secure, precautions must be
instituted throughout it. A chain is only as strong as its weakest link.

Operating System Concepts — 9t Edition 2.6 Silberschatz, Galvin and Gagne ©2013

“$77 A View of Operating System Services

user and other system programs

GUl batch command line

user interfaces

system calls
program IO file I resource ,
: : communication : accountin
execution operations systems allocation 9
error pro;ic;uon
detection . security
services

operating system

hardware

A Bk
Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9th Edition 2.7

R

)

277 User Operating System Interface - CLI

® CLI or command interpreter allows direct command entry

» Sometimes implemented in kernel, sometimes by systems
program

» Sometimes multiple flavors implemented — shells
» Primarily fetches a command from user and executes it

Sometimes commands built-in, sometimes just names of
programs

» If the latter, adding new features doesn'’t require shell
modification

‘~\‘
\ ,/3..,\\\,
k)

Operating System Concepts — 9t Edition 2.8 Silberschatz, Galvin and Gagne ©2013

e

“$%/Bourne Shell Command Interpreter

Default
5O & J
MNew Info Close Execute Bockma-ks
—l Default Default
PEG-Mac-Pro:-- pbg$ w
15:44 up 56 mins, 2 users, lood averoges: 1.51 1.53 1.35
USER TTY FROM LOGINE IDLE WHAT
pbg console - 14:34 58 -
pbg =008 - 15:85 - W
PRG-Mnc-Prot~ phn% instat &
diskd diskl dis<1@ cou load average
KBA. Lps MBSs KBAL Lps MB/s KBAL Lps MBSs wus sy id 1m Sm 15m
33,75 343 11.30 B4.31 4 DB 88 .57 @ B6.82 11 5 84 1.51 1.53 1.65
5.7 328 1.65 9. 88 g B8 9,98 g 8.894 4 294 1.39 1.51 1.65
4,28 320 1,37 a.ea @ p.og a.48 @ 0.3 5 392 1.44 1.51 1.65
AL
PEG-Mac-Pro:-- pkg% l=
Applicazions Music WesEx
Applications (Parallels) Pandc Packages coqfig.log
Desktop Pictires getsmartdaota. cxt
Documen<s Public ima
Downloads Sites log
Dropbox Thumks . db panda-dist
Library Virtral Machines praob . txt
Movies Volumes scripts
PEG-Mac-Pro:~ pbg$ pwd
flsersspbg

PEG-Mac-Pro:~ pbg} ping 122.168.1.1

PING 102 162.1.1 ({192 168 .1.1%: 56 dcta bytes

64 bytes from 192.168.1.1: icnp_seq=€ ttl=64 time=2. 257 ms
64 bytes from 192.168.1.1: itunp_sey=1 ttl=64 time=1. 262 m=
AL

--- 192.168.1.1 ping statistics ---

2 packe:zs transmitzed, 2 packets received, 0.8% packet loss
round-trip minfava/max/stodev = 1.264/1.760/2. 25770 498 ms
MBGC Mac Pro:-- pbgl D

ﬁfmyni

(.

“»”7 User Operating System Interface - GUI

m User-friendly desktop metaphor interface

Usually mouse, keyboard, and monitor
Icons represent files, programs, actions, etc

Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open directory
(known as a folder)

Invented at Xerox PARC

® Many systems now include both CLI and GUI interfaces

Operating System Concepts — 9th Edition 2.10

Microsoft Windows is GUI with CLI “command” shell

Apple Mac OS X is “Aqua” GUI interface with UNIX kernel underneath
and shells available

Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,
GNOME)

Silberschatz, Galvin and Gagne ©2013

e

A\

't Touchscreen Interfaces

® Touchscreen devices require new
interfaces

e Mouse not possible or not desired

e Actions and selection based on
gestures

e Virtual keyboard for text entry

Operating System Concepts — 9th Edition 2.1

A N
Silberschatz, Galvin and Gagne ©2013

The Mac OS X GUI

@ Grab File Edit (S0 Window Help O B — @ B S & 20D 5 & 4 15:06EDT Men 2 Jul

6 Q°
E

EEIEEeL2EE 3 o E mQ&

s= Documants= [fusice Mavise= Picwres= Detktons Apolications= ZFBG= ZPBGE+ iDisk~

[@ to-ar |

~06310ungrade |) Ceskicp
} b

Dete Modified Size Appliatian
/2407, 10370 WELEE Skm

4 Neowark ©118/07 55 T7 2
3 Freation Siine Dzasag B £118)07, 55380 T7HB Inkscane
: Fortal e Netaie Crazhics |nage Tody, 106PM 39248 Fredize «

2| Macintash KD Today, TOGPM L23kB Iakscane P
2 Unzitled = n To i ESIXKB Froamw 2
2 Unzitled 2 T

208G
i ZPEGE

& iDisk

* Pater Baar Galvin's ifad

oo

Premes

4 pty Mame: Tg-2.0a —
: ag-2.3a 1

S goiciiney Kind: TIFF Cozument

[Dotuments UT: subkcri

URL:

| Games
| Wilities E
Size: 3500 KE 1901236 bytes) ehiloial
| tma
a9 L2 36 bytes
i Fwsical: E1 KE 802,144

W Favorites
4 Music T R
ia Vonies) = TTeT 7 ik

Picturac * Rg-24a @ fy-2ra

| Sites ¥ e
o Public | osa-gir

"
| Peoterences LF tieol applizztion:
¥ Lbrary I mp [
o IPEG Capacity:

[e = Frae:

Jiy
CALVEN [BLOBLAL G
iZPEG

| projects ME
B consult 3 incs Wl mas [2P3C- 1 :

10F € iners selected -

7343 Gawiazle 5.0 53 use:

| Address Book

ary and Thesaurus
O, cperating system

e
| QAanzle

Hema
o |l Aagle Camputer In . Apple Computer Inc.
Directories | s Aapls Computer In 4 §
Lastimport apecreat-ing sys-tem
raun
the software th 1t supports a computer s | functions.
such as schoculie g tasks, exesviing applic: dons, ar:l

i 1-800-MY-APPLE

cantralling pecipher:1s

B00-275-2273

home page it appe.com
work 1 Infivite Loop
Copert no CA 93012
U-ited Sizles

Operating System Concepts — 9t Edition 2.12 Silberschatz, Galvin and Gagne ©2013

:W System Calls

® Programming interface to the services provided by the OS
m Typically written in a high-level language (C or C++)

m Mostly accessed by programs via a high-level Application Program
Interface (API) rather than direct system call use

B Three most common APIs are Win32 API for Windows, POSIX API
for POSIX-based systems (including virtually all versions of UNIX,
Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM)

®m Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are
generic)

Operating System Concepts — 9t Edition 2.13 Silberschatz, Galvin and Gagne ©2013

7 Example of System Calls

m System call sequence to copy the contents of one file to another file

source file p-| destination file

4 Example System Call Sequence A

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

A

4

Operating System Concepts — 9t Edition 2.14 Silberschatz, Galvin and Gagne ©2013

- o Example of Standard API

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t read(int fd, wvoid *buf, size t count)
| | | | | |
return function parameters
value name

A program that uses the read () function must include theunistd.h header
file, as this file defines the ssize t and size t data types (among other
things). The parameters passed to read () are as follows:
* int fd—the file descriptor to be read
¢ void *buf-—a buffer where the data will be read into
* size t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

Operating System Concepts — 9t Edition 2.15 Silberschatz, Galvin and Gagne ©2013

i’ =
g I i

“»7/ System Call Implementation

m Typically, a number associated with each system call

e System-call interface maintains a table indexed according to
these numbers

m The system call interface invokes intended system call in OS kernel
and returns status of the system call and any return values

m The caller need know nothing about how the system call is
implemented

e Just needs to obey API and understand what OS will do as a
result call

e Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built into
libraries included with compiler)

Operating System Concepts — 9t Edition 2.16 Silberschatz, Galvin and Gagne ©2013

‘* W API — System Call — OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
| open ()
Implementation
i » of open ()
. system call
return

Operating System Concepts — 9t Edition 2.17 Silberschatz, Galvin and Gagne ©2013

ij»;

o Y

ﬁ,,mv..,k

“»”’ System Call Parameter Passing

m Often, more information is required than simply identity of desired
system call

e Exact type and amount of information vary according to OS and
call

m Three general methods used to pass parameters to the OS
e Simplest: pass the parameters in registers
» In some cases, may be more parameters than registers

e Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register

» This approach taken by Linux and Solaris

e Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

e Block and stack methods do not limit the number or length of
parameters being passed

—

Operating System Concepts — 9t Edition 2.18 Silberschatz, Galvin and Gagne ©2013

7/ Parameter Passing via Table

— X

register

X: parameters
for call

— ™ use parameters code for
load address X from table X system
system call 13 — > call 13

user program

operating system

Operating System Concepts — 9t Edition 2.19 Silberschatz, Galvin and Gagne ©2013

Types of System Calls

® Process control

end, abort

load, execute

create process, terminate process

get process attributes, set process attributes
wait for time

wait event, signal event

allocate and free memory

Dump memory if error

Debugger for determining bugs, single step execution

Locks for managing access to shared data between processes

Operating System Concepts — 9th Edition 2.20

Silberschatz, Galvin and Gagne ©2013

m%.k

h» Types of System Calls

® File management
e create file, delete file
e open, close file
e read, write, reposition
e get and set file attributes

m Device management
e request device, release device
e read, write, reposition
e get device attributes, set device attributes
e |ogically attach or detach devices

Operating System Concepts — 9th Edition 2.21

Silberschatz, Galvin and Gagne ©2013

.
“$¥7 Types of System Calls (Cont.)

® |nformation maintenance
e get time or date, set time or date
e get system data, set system data
e get and set process, file, or device attributes

B Communications
e create, delete communication connection

e send, receive messages if message passing model to host name or
process name

» From client to server
e Shared-memory model create and gain access to memory regions
e transfer status information
e attach and detach remote devices

Operating System Concepts — 9t Edition 2.22 Silberschatz, Galvin and Gagne ©2013

e

“$%/ Types of System Calls (Cont.)

m Protection
e Control access to resources
e Get and set permissions
e Allow and deny user access

A

Operating System Concepts — 9t Edition 2.23 Silberschatz, Galvin and Gagne ©2013

Examples of Windows and

Unix System Calls

Process
Control

File

Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Operating System Concepts — 9th Edition

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConsole ()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor()

SetSecurityDescriptorGroup()

2.24

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe()
shmget ()
mmap ()

chmod ()
umask ()
chown ()

Silberschatz, Galvin and Gagne ©2013

=

“$%7 Standard C Library Example

m C program invoking printf() library call, which calls write() system call

#include <stdio.h=
int main ()

{

printf ("Greetings");, |=-

return 0;
H

user
mode ¥

standard C library ——
kernel
mode

write [)
write ()
system call

/4 Y
Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9th Edition 2.25

N

B System programs provide a convenient environment for program
development and execution. They can be divided into:

e File manipulation

e Status information sometimes stored in a File modification
e Programming language support

e Program loading and execution

e Communications

e Background services

e Application programs

m Most users’ view of the operation system is defined by system
programs, not the actual system calls

Operating System Concepts — 9t Edition 2.26 Silberschatz, Galvin and Gagne ©2013

V- System Programs

® Provide a convenient environment for program development and
execution

e Some of them are simply user interfaces to system calls; others
are considerably more complex

® File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories

m Status information

e Some ask the system for info - date, time, amount of available
memory, disk space, number of users

e Others provide detailed performance, logging, and debugging
information

e Typically, these programs format and print the output to the
terminal or other output devices

e Some systems implement a registry - used to store and retrieve
configuration information

—

N \ v
> ey ‘}
/%w‘} Q) ﬁ\\(
y };’K
A K

Operating System Concepts — 9t Edition 2.27 Silberschatz, Galvin and Gagne ©2013

S5 System Programs (Cont.)

® File modification
e Text editors to create and modify files

e Special commands to search contents of files or perform
transformations of the text

B Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

® Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems for
higher-level and machine language

®m Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

e Allow users to send messages to one another’ s screens, browse
web pages, send electronic-mail messages, log in remotely,
transfer files from one machine to another

L AN

Operating System Concepts — 9t Edition 2.28 Silberschatz, Galvin and Gagne ©2013

P,

(g
1\~,,! :/%;r ,

System Programs (Cont.)

J

m Background Services
e Launch at boot time
» Some for system startup, then terminate
» Some from system boot to shutdown

e Provide facilities like disk checking, process scheduling, error
logging, printing

e Run in user context not kernel context

e Known as services, subsystems, daemons

m Application programs
e Don’t pertain to system
e Run by users
e Not typically considered part of OS
e Launched by command line, mouse click, finger poke

Operating System Concepts — 9t Edition 2.29 Silberschatz, Galvin and Gagne ©2013

557 Example: MS-DOS

m Single-tasking

m Shell invoked when system

booted free memory
B Simple method to run
program free memory
e No process created process

® Single memory space

m Loads program into memory,

. command
overwriting all but the kernel interpreter command
i interpreter
® Program exit -> shell
kernel kernel

reloaded

(a) (b)

(a) At system startup (b) running a program

4 B/
Operating System Concepts — 9t Edition 2.30 Silberschatz, Galvin and Gagne ©2013

557 Example: FreeBSD

®m Unix variant

rocess D
® Multitasking P
m User login -> invoke user’ s choice of free memory
shell
m Shell executes fork() system call to create
process process C

e Executes exec() to load program into
process interpreter

e Shell waits for process to terminate or
continues with user commands

®m Process exits with code of 0 — no error or process B

> (0 — error code

kernel

\

\

A\
e \

B s Y
%};&\W\ |
/ 4 \

A \\'

\, B
.

\

<A

Operating System Concepts — 9t Edition 2.31 Silberschatz, Galvin and Gagne ©2013

S5 Example: UNIX

m UNIX - limited by hardware functionality, the original UNIX operating
system had limited structuring. The UNIX OS consists of two
separable parts

e Systems programs
e The kernel

» Consists of everything below the system-call interface and
above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

Operating System Concepts — 9t Edition 2.32 Silberschatz, Galvin and Gagne ©2013

mv»l

@» Traditional UNIX System Structure

Beyond simple but not fully layered

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

- signals terminal file system CPU scheduling

g) handling swapping block /O page replacement

< character |/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Operating System Concepts — 9t Edition 2.33 Silberschatz, Galvin and Gagne ©2013

57 Layered Approach

® The operating system is
divided into a number of
layers (levels), each built
on top of lower layers.
The bottom layer (layer 0),
is the hardware; the
highest (layer N) is the
user interface.

user interface

layer O
hardware

m With modularity, layers are
selected such that each
uses functions
(operations) and services
of only lower-level layers

Operating System Concepts — 9t Edition 2.34 Silberschatz, Galvin and Gagne ©2013

/ {A<<.m>».k

m Most modern operating systems implement loadable kernel modules
e Uses object-oriented approach
e Each core component is separate
e Each talks to the others over known interfaces
e Each is loadable as needed within the kernel

m Overall, similar to layers but with more flexible
e Linux, Solaris, etc

Operating System Concepts — 9t Edition 2.35 Silberschatz, Galvin and Gagne ©2013

N

(4

“$¥/ Operating-System Debugging

J

®m Debugging is finding and fixing errors, or bugs
OSes generate log files containing error information

Failure of an application can generate core dump file capturing
memory of the process

m Operating system failure can generate crash dump file containing
kernel memory

m Beyond crashes, performance tuning can optimize system performance
e Sometimes using trace listings of activities, recorded for analysis

e Profiling is periodic sampling of instruction pointer to look for
statistical trends

Kernighan’ s Law: “Debugging is twice as hard as writing the code in the
first place. Therefore, if you write the code as cleverly as possible, you
are, by definition, not smart enough to debug it.”

Operating System Concepts — 9t Edition 2.36 Silberschatz, Galvin and Gagne ©2013

B Improve performance by e

removing bottlenecks Applcations | Frocesses | Performance | Networking

. CPU L ZPU s Histor
®m OS must provide means of - _

computing and displaying
measures of system
behaVior FF Usage Page File Lisage History

m For example, “top” program
or Windows Task Manager

Totals Phwsical Memary ()

Handles 12621 Total 2096616

Threads 563 Available 1391552

Processes 50 System Cache 1584154

Commit Charge (k) Kermel Memaory (k)

Total 642128 Total 118724

Lirnik 4036760 Paged et w¥G]]

Feal: ailz16 Monpaged 33088
Processes: S0 ZPU Usage: 0% Commit Charge: 627M | 3942M

A\
A\

=
A }g(X

Operating System Concepts — 9t Edition 2.37 Silberschatz, Galvin and Gagne ©2013

:W System Boot

® When power initialized on system, execution starts at a fixed memory
location

e Firmware ROM used to hold initial boot code

m Operating system must be made available to hardware so hardware
can start it

e Small piece of code — bootstrap loader, stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it

e Sometimes two-step process where boot block at fixed location
loaded by ROM code, which loads bootstrap loader from disk

®m Common bootstrap loader, GRUB, allows selection of kernel from
multiple disks, versions, kernel options

m Kernel loads and system is then running

Operating System Concepts — 9t Edition 2.38 Silberschatz, Galvin and Gagne ©2013

ar of Reading Assignment

m Read the following sections as a reading assignment. You will be
responsible from the reading assignments in the exam.

e Sections 2.1-2.5,
e Sections 2.7.1-2.7.3
e Section 2.10

VS
Operating System Concepts — 9t Edition 2.39 Silberschatz, Galvin and Gagne ©2013

