
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 2: System Structures

2.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 2: System Structures

� Operating System Services

� User Operating System Interface

� System Calls

� Types of System Calls

� System Programs

� Operating System Design and Implementation

� Operating System Structure

� Operating System Debugging

� Operating System Generation

� System Boot

2.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

� To describe the services an operating system provides to users,

processes, and other systems

� To discuss the various ways of structuring an operating system

� To explain how operating systems are installed and customized and

how they boot

2.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services

� Operating systems provide an environment for execution of programs and

services to programs and users

� One set of operating-system services provides functions that are helpful to the

user:

� User interface - Almost all operating systems have a user interface (UI).

� Varies between Command-Line (CLI), Graphics User Interface (GUI),

Batch

� Program execution - The system must be able to load a program into

memory and to run that program, end execution, either normally or

abnormally (indicating error)

� I/O operations - A running program may require I/O, which may involve a

file or an I/O device

� File-system manipulation - The file system is of particular interest.

Programs need to read and write files and directories, create and delete

them, search them, list file Information, permission management.

2.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

� Communications – Processes may exchange information, on the

same computer or between computers over a network

� Communications may be via shared memory or through

message passing (packets moved by the OS)

� Error detection – OS needs to be constantly aware of possible

errors

� May occur in the CPU and memory hardware, in I/O devices, in

user program

� For each type of error, OS should take the appropriate action to

ensure correct and consistent computing

� Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system

2.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

� Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

� Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

� Many types of resources - Some (such as CPU cycles, main memory,
and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code

� Accounting - To keep track of which users use how much and what kinds
of computer resources

� Protection and security - The owners of information stored in a multiuser
or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

� Protection involves ensuring that all access to system resources is
controlled

� Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access attempts

� If a system is to be protected and secure, precautions must be
instituted throughout it. A chain is only as strong as its weakest link.

2.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A View of Operating System Services

2.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Operating System Interface - CLI

� CLI or command interpreter allows direct command entry

� Sometimes implemented in kernel, sometimes by systems

program

� Sometimes multiple flavors implemented – shells

� Primarily fetches a command from user and executes it

– Sometimes commands built-in, sometimes just names of

programs

» If the latter, adding new features doesn’t require shell

modification

2.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bourne Shell Command Interpreter

2.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Operating System Interface - GUI

� User-friendly desktop metaphor interface

� Usually mouse, keyboard, and monitor

� Icons represent files, programs, actions, etc

� Various mouse buttons over objects in the interface cause various

actions (provide information, options, execute function, open directory

(known as a folder)

� Invented at Xerox PARC

� Many systems now include both CLI and GUI interfaces

� Microsoft Windows is GUI with CLI “command” shell

� Apple Mac OS X is “Aqua” GUI interface with UNIX kernel underneath

and shells available

� Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,

GNOME)

2.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Touchscreen Interfaces

� Touchscreen devices require new

interfaces

� Mouse not possible or not desired

� Actions and selection based on

gestures

� Virtual keyboard for text entry

2.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

The Mac OS X GUI

2.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Calls

� Programming interface to the services provided by the OS

� Typically written in a high-level language (C or C++)

� Mostly accessed by programs via a high-level Application Program
Interface (API) rather than direct system call use

� Three most common APIs are Win32 API for Windows, POSIX API
for POSIX-based systems (including virtually all versions of UNIX,
Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM)

� Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are
generic)

2.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of System Calls

� System call sequence to copy the contents of one file to another file

2.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Standard API

2.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Call Implementation

� Typically, a number associated with each system call

� System-call interface maintains a table indexed according to

these numbers

� The system call interface invokes intended system call in OS kernel

and returns status of the system call and any return values

� The caller need know nothing about how the system call is

implemented

� Just needs to obey API and understand what OS will do as a

result call

� Most details of OS interface hidden from programmer by API

� Managed by run-time support library (set of functions built into

libraries included with compiler)

2.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

API – System Call – OS Relationship

2.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Call Parameter Passing

� Often, more information is required than simply identity of desired
system call

� Exact type and amount of information vary according to OS and
call

� Three general methods used to pass parameters to the OS

� Simplest: pass the parameters in registers

� In some cases, may be more parameters than registers

� Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register

� This approach taken by Linux and Solaris

� Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

� Block and stack methods do not limit the number or length of
parameters being passed

2.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Parameter Passing via Table

2.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls

� Process control

� end, abort

� load, execute

� create process, terminate process

� get process attributes, set process attributes

� wait for time

� wait event, signal event

� allocate and free memory

� Dump memory if error

� Debugger for determining bugs, single step execution

� Locks for managing access to shared data between processes

2.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls

� File management

� create file, delete file

� open, close file

� read, write, reposition

� get and set file attributes

� Device management

� request device, release device

� read, write, reposition

� get device attributes, set device attributes

� logically attach or detach devices

2.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls (Cont.)

� Information maintenance

� get time or date, set time or date

� get system data, set system data

� get and set process, file, or device attributes

� Communications

� create, delete communication connection

� send, receive messages if message passing model to host name or

process name

� From client to server

� Shared-memory model create and gain access to memory regions

� transfer status information

� attach and detach remote devices

2.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of System Calls (Cont.)

� Protection

� Control access to resources

� Get and set permissions

� Allow and deny user access

2.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Windows and

Unix System Calls

2.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Standard C Library Example

� C program invoking printf() library call, which calls write() system call

2.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Programs

� System programs provide a convenient environment for program

development and execution. They can be divided into:

� File manipulation

� Status information sometimes stored in a File modification

� Programming language support

� Program loading and execution

� Communications

� Background services

� Application programs

� Most users’ view of the operation system is defined by system

programs, not the actual system calls

2.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Programs

� Provide a convenient environment for program development and
execution

� Some of them are simply user interfaces to system calls; others
are considerably more complex

� File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories

� Status information

� Some ask the system for info - date, time, amount of available
memory, disk space, number of users

� Others provide detailed performance, logging, and debugging
information

� Typically, these programs format and print the output to the
terminal or other output devices

� Some systems implement a registry - used to store and retrieve
configuration information

2.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Programs (Cont.)

� File modification

� Text editors to create and modify files

� Special commands to search contents of files or perform
transformations of the text

� Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

� Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems for
higher-level and machine language

� Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

� Allow users to send messages to one another’s screens, browse
web pages, send electronic-mail messages, log in remotely,
transfer files from one machine to another

2.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Programs (Cont.)

� Background Services

� Launch at boot time

� Some for system startup, then terminate

� Some from system boot to shutdown

� Provide facilities like disk checking, process scheduling, error
logging, printing

� Run in user context not kernel context

� Known as services, subsystems, daemons

� Application programs

� Don’t pertain to system

� Run by users

� Not typically considered part of OS

� Launched by command line, mouse click, finger poke

2.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example: MS-DOS

� Single-tasking

� Shell invoked when system

booted

� Simple method to run

program

� No process created

� Single memory space

� Loads program into memory,

overwriting all but the kernel

� Program exit -> shell

reloaded

(a) At system startup (b) running a program

2.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example: FreeBSD

� Unix variant

� Multitasking

� User login -> invoke user’s choice of

shell

� Shell executes fork() system call to create

process

� Executes exec() to load program into

process

� Shell waits for process to terminate or

continues with user commands

� Process exits with code of 0 – no error or

> 0 – error code

2.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example: UNIX

� UNIX – limited by hardware functionality, the original UNIX operating

system had limited structuring. The UNIX OS consists of two

separable parts

� Systems programs

� The kernel

� Consists of everything below the system-call interface and

above the physical hardware

� Provides the file system, CPU scheduling, memory

management, and other operating-system functions; a large

number of functions for one level

2.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Traditional UNIX System Structure

Beyond simple but not fully layered

2.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Layered Approach

� The operating system is

divided into a number of

layers (levels), each built

on top of lower layers.

The bottom layer (layer 0),

is the hardware; the

highest (layer N) is the

user interface.

� With modularity, layers are

selected such that each

uses functions

(operations) and services

of only lower-level layers

2.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Modules

� Most modern operating systems implement loadable kernel modules

� Uses object-oriented approach

� Each core component is separate

� Each talks to the others over known interfaces

� Each is loadable as needed within the kernel

� Overall, similar to layers but with more flexible

� Linux, Solaris, etc

2.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating-System Debugging

� Debugging is finding and fixing errors, or bugs

� OSes generate log files containing error information

� Failure of an application can generate core dump file capturing

memory of the process

� Operating system failure can generate crash dump file containing

kernel memory

� Beyond crashes, performance tuning can optimize system performance

� Sometimes using trace listings of activities, recorded for analysis

� Profiling is periodic sampling of instruction pointer to look for

statistical trends

Kernighan’s Law: “Debugging is twice as hard as writing the code in the

first place. Therefore, if you write the code as cleverly as possible, you

are, by definition, not smart enough to debug it.”

2.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Performance Tuning

� Improve performance by

removing bottlenecks

� OS must provide means of

computing and displaying

measures of system

behavior

� For example, “top” program

or Windows Task Manager

2.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Boot

� When power initialized on system, execution starts at a fixed memory

location

� Firmware ROM used to hold initial boot code

� Operating system must be made available to hardware so hardware

can start it

� Small piece of code – bootstrap loader, stored in ROM or

EEPROM locates the kernel, loads it into memory, and starts it

� Sometimes two-step process where boot block at fixed location

loaded by ROM code, which loads bootstrap loader from disk

� Common bootstrap loader, GRUB, allows selection of kernel from

multiple disks, versions, kernel options

� Kernel loads and system is then running

2.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Reading Assignment

� Read the following sections as a reading assignment. You will be

responsible from the reading assignments in the exam.

� Sections 2.1-2.5,

� Sections 2.7.1-2.7.3

� Section 2.10

