Chapter 3: Process Concept

Operating System Concepts — 9th Edition Silberschatz, Galvin and Gagne ©2013

ﬂﬁ,_‘.wé
S Chapter 3: Process Concept

Process Concept

Process Scheduling
Operations on Processes
Interprocess Communication
Examples of IPC Systems

Communication in Client-Server Systems

Operating System Concepts — 9t Edition 3.2

o LR

o ;‘ li
. : "-:t\ ‘6\\1

o

Silberschatz, Galvin and Gagne ©2013

& ;%,../ O bj ectives

B To introduce the notion of a process -- a program in execution, which
forms the basis of all computation

m To describe the various features of processes, including scheduling,
creation and termination, and communication

m To explore interprocess communication using shared memory and
message passing

m To describe communication in client-server systems

Operating System Concepts — 9t Edition 3.3 Silberschatz, Galvin and Gagne ©2013

=

ﬁ,‘.ml

“SF Process Concept

® An operating system executes a variety of programs:

e Batch system — jobs

e Time-shared systems — user programs or tasks
m Textbook uses the terms job and process almost interchangeably
® Process — a program in execution; process execution must progress in sequential fashion
m Multiple parts

e The program code, also called text section

e Current activity including program counter, processor registers

e Stack containing temporary data

» Function parameters, return addresses, local variables

e Data section containing global variables

e Heap containing memory dynamically allocated during run time
m Program is passive entity stored on disk (executable file), process is active

e Program becomes process when executable file loaded into memory
m Execution of program started via GUI mouse clicks, command line entry of its name, etc
®m One program can be several processes

e Consider multiple users executing the same program . --'fg,;l_:j;{.‘],
e

“d “Ahghy

Operating System Concepts — 9t Edition 3.4 Silberschatz, Galvin and Gagne ©2013

r & Process in Memory

max

stack

heap

data

text

' =
£ AT

Operating System Concepts — 9t Edition 3.5 Silberschatz, Galvin and Gagne ©2013

s@;\;.‘;—; Memory Layout of a C Program

) #include <stdio.h>
high #include <stdlib.h>
argc, agrv
memory
stack int x;
L e = Ginty:lS;
‘l' , . I
int main(int argc, char *argv|[])
L {
| - — o I:int *values;
heap < J TnE. 4;
—
uninitialized [, ,
data values = (int *)malloc (sizeof (int) *5) ;
initialized for(i = 0; i < 5; i++)
data values[i] = i;
low text return 0;
memory }
Operating System Concepts — 9t Edition 3.6

Silberschatz, Galvin and Gagne ©2013

m As a process executes, it changes state
e new:. The process is being created
e running: Instructions are being executed
e waiting: The process is waiting for some event to occur
e ready:. The process is waiting to be assigned to a processor
e terminated: The process has finished execution

7 i .
:'\‘]

i %‘!‘{b

“d “Ahghy

Operating System Concepts — 9t Edition 3.7 Silberschatz, Galvin and Gagne ©2013

g Diagram of Process State

™

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

A A8

Operating System Concepts — 9t Edition 3.8 Silberschatz, Galvin and Gagne ©2013

Process Control Block (PCB)

Information associated with each process

(also called task control block)

Process state — running, waiting, etc

Program counter — location of instruction to next
execute

CPU regqisters — contents of all process-centric
registers

CPU scheduling information- priorities, scheduling
queue pointers

Memory-management information — memory allocated
to the process

Accounting information — CPU used, clock time
elapsed since start, time limits

I/O status information — I/O devices allocated to
process, list of open files

Operating System Concepts — 9t Edition 3.9

process state

process number

program counter

registers

memory limits

list of open files

AR
AR
g "’%‘F{
4 ‘_..VD
L <

Silberschatz, Galvin and Gagne ©2013

> anf
-

Process Representation in Linux

B Represented by the C structure task struct
pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process’ s parent */
struct list head children; /* this process’ s children */
struct files struct *files; /* list of open files */

struct

Operating System Concepts — 9t Edition

mm struct *mm; /* address space of this process */

f

current

(currently executing proccess)

3.10

7N N Y
struct task_struct struct task_struct struct task_struct
process information process information - process information
[] [] []

Silberschatz, Galvin and Gagne ©2013

Process Scheduling

m Maximize CPU use, quickly switch processes onto CPU for time sharing

B Process scheduler selects among available processes for next

execution on CPU
® Maintains scheduling queues of processes

e Job queue — set of all processes in the system

e Ready queue — set of all processes residing in main memory,
ready and waiting to execute

e Device queues — set of processes waiting for an I/O device

e Processes migrate among the various queues

Operating System Concepts — 9t Edition

3.1

= e

=N S

&’ %ﬁ'{
A A Y

Silberschatz, Galvin and Gagne ©2013

I Ready Queue And Various

/O Device Queues

queue header PCB, PCB,
ready head > > =
queue tail registers registers
L] L]
L L]
L] L]
mag head +——=
tape - .
unit 0 tail 2
{nag head +—=
ape
unif1 tail 5 PCB; PCB,, PCBsg
disk head
unit O tail \
PCBs
terminal head T—> —=
unit 0 iail sl
Operating System Concepts — 9t Edition 3.12 Silberschatz, Galvin and Gagne ©2013

Ty

-

E ami

“$%/ Representation of Process Scheduling

® Queuing diagram represents queues, resources, flows

| ready queue -@) >

/O queue f&—— /O request |«
time slice P
expired
child fork a .
executes child
interrupt walit for an -
OCCUrs interrupt

R

a " = :",l‘]
. =X W
. w_‘

A Rk

Operating System Concepts — 9t Edition 3.13 Silberschatz, Galvin and Gagne ©2013

N Schedulers

B Long-term scheduler (or job scheduler) — selects which processes should be brought
into the ready queue

m Short-term scheduler (or CPU scheduler) — selects which process should be executed
next and allocates CPU

e Sometimes the only scheduler in a system
m Short-term scheduler is invoked very frequently (milliseconds) = (must be fast)

® Long-term scheduler is invoked very infrequently (seconds, minutes) = (may be slow)
® The long-term scheduler controls the degree of multiprogramming

B Processes can be described as either:

e [/O-bound process — spends more time doing I/O than computations, many short
CPU bursts

e CPU-bound process — spends more time doing computations; few very long CPU
bursts

® Long-term scheduler strives for good process mix

-

: " i = ,l‘]
3 S
2
&l P A

ok

Operating System Concepts — 9t Edition 3.14 Silberschatz, Galvin and Gagne ©2013

-

“$%7 Addition of Medium Term Scheduling

B Medium-term scheduler can be added if degree of multiple programming
needs to decrease

e Remove process from memory, store on disk, bring back in from disk
to continue execution: swapping

swap in partially executed swap out
swapped-out processes

ready queue -@ » end
I/O waliting
queues

vy

%
AN

Al
. :XI

=
A
WA
o

5 .:}\
Y
' Ay

Operating System Concepts — 9t Edition 3.15 Silberschatz, Galvin and Gagne ©2013

ot Context Switch

m When CPU switches to another process, the system must save the state of
the old process and load the saved state for the new process via a context
switch

m Context of a process represented in the PCB

m Context-switch time is overhead; the system does no useful work while
switching

e The more complex the OS and the PCB -> longer the context switch

® Time dependent on hardware support

e Some hardware provides multiple sets of registers per CPU -> multiple
contexts loaded at once

Operating System Concepts — 9t Edition 3.16 Silberschatz, Galvin and Gagne ©2013

(emy -
=277 CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing l / l
. I
M save state into PCB,
L J e
. > idle
reload state from PCB; 1
>idle interrupt or system call executing
‘ \ ! -
save state into PCB;
. > idle
L]
) reload state from PCB, y
executing | _\
v

Operating System Concepts — 9t Edition 3.17 Silberschatz, Galvin and Gagne ©2013

S Process Creation

m Parent process create children processes, which, in turn create other
processes, forming a tree of processes

B Generally, process identified and managed via a process identifier (pid)

B Resource sharing options
e Parent and children share all resources
e Children share subset of parent’ s resources
e Parent and child share no resources

m Execution options
e Parent and children execute concurrently

e Parent waits until children terminate

a " e = .'_',l‘.!
=)
Foa -

/ v X
‘_'v -

“d “Ahghy

Operating System Concepts — 9t Edition 3.18 Silberschatz, Galvin and Gagne ©2013

o A Tree of Processes in Linux

init
pid =1

kthreadd sshd
pid =2 pid = 3028
khel per sshd
pid =6 pid = 3610
P N 1d = 400
pid = 9298 pid = 9204 pi

Operating System Concepts — 9t Edition 3.19 Silberschatz, Galvin and Gagne ©2013

5 Process Creation (Cont.)

® Address space
e Child duplicate of parent
e Child has a program loaded into it

®m UNIX examples
e fork () system call creates new process

e exec () system call used after a fork () to replace the process’ memory space with a new
program

\\\\\

o

Operating System Concepts — 9t Edition 3.20 Silberschatz, Galvin and Gagne ©2013

5 Semantics of fork() and exec()

Difference between fork() and exec() system calls:
m The fork()
e create an exact copy of a running process

e created copy is the child process, the running process is the parent process.
m exec() system

e replace a process image with a new process image.
e no concept of parent and child processes in exec() system call.
In fork() parent and child processes are executed at the same time.

® In exec() the control does not return to where the exec function was called, it will
execute the new process.

AR
AR
g "’%‘F{
4 ‘_..VD
L <

Operating System Concepts — 9t Edition 3.21 Silberschatz, Galvin and Gagne ©2013

ﬁj_ _ {”*'g%

%
ii* I‘\ba "

fork () Sample -1

int main()

{
int pl; fork
pl = fork(); /*forkl*/
printf (“%d\n”, pl);

}

Operating System Concepts — 9t Edition 3.22 Silberschatz, Galvin and Gagne ©2013

(,q""*-f%
- fork () Sample- 2

1‘1&‘_ ‘\5

int main()

{
int pl, p2;
pl = fork(); /*forkl*/
p2 = fork(Q); /*fork2#/
printf (“%d\n”, pl + p2);

}

PID=12
pl =11

p2

PID=13

Operating System Concepts — 9t Edition 3.23 Silberschatz, Galvin and Gagne ©2013

“3»/ fork() veexec() Sample -3

/* programl.c */
main()

{
int 1, pid;

pid = fork();
1f(pi1d==0)
execlp("./program2","program2","3" ,NULL) ;

for (i=0; i<4; i++)
printf("parent\n");

o LR

o ‘:‘ .:li
£ — ‘\\

o

Operating System Concepts — 9t Edition 3.24 Silberschatz, Galvin and Gagne ©2013

=

;"E’Eork() ve exec () Kullanimi: prog2

(el

>

/¥ program2.c */
main(int argc, char *argv[])

{

int 1, son, pid;

son = atoi(argv[1l]); /* convert char to integer */
pid = fork();

if (pid==0)
execlp("./program3","program3"™,"2" ,NULL) ;

for (i=0; i<son; i++)
printf("child\n");
}

Operating System Concepts — 9t Edition 3.25 Silberschatz, Galvin and Gagne ©2013

%ﬁ%%?-fjfc)]:l:t()b ve exec ()

Kullanimi: prog3

/% program3.c */
main(int argc, char *argv[])

{
int 1,son;
son = atoi(argv[l]);
for (i=0:; 1i<son; i++)
printf("grandchild\n");
}
Operating System Concepts — 9t Edition 3.26

Sy .'\.\\.;I:,
£
A E‘ N

Silberschatz, Galvin and Gagne ©2013

; -
(A‘i‘("*'&

s)4

e fork () ve exec () Kullanimi

L

fork()

Operating System Concepts — 9t Edition

exeC(“./programZII) -

fork()

— exec (*./program3”)

A 4

PROG 3

3.27 Silberschatz, Galvin and Gagne ©2013

Use of fork and exec

m UNIX examples
e fork () system call creates new process

e exec () system call used after a fork () to replace the process’ memory space with a new
program

parent (pid > 0)
m parent resumes

parent

child (pid = 0)

Operating System Concepts — 9t Edition 3.28 Silberschatz, Galvin and Gagne ©2013

»»7 C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{

pid.t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

}

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL) ;
printf("Child Complete");

}

return 0;

YE: N

£

Operating System Concepts — 9t Edition 3.29 Silberschatz, Galvin and Gagne ©2013

=

)
(RN Ty = - -
=277 Creating a Separate Process via Windows API

Operating System Concepts — 9t Edition

#include <=stdioc.h>
#include <windows.h=

int main(VOID)

{

STARTUPINFO si;
PROCESS_INFORMATION pi;

/* allocate memory */
ZeroMemory (&si, sizeof(si));
gi.cb = sizeof(si);
ZeroMemory (&pi, sizeof(pi));

/* create child process */

if (!CreateProcess(NULL, /* use command line */
"C:\\WINDOWS\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /* don’t inherit thread handle */
FALSE, /* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block */
NULL, /* use parent’s existing directory */
&si,
&pi))

fprintf(stderr, "Create Process Failed");
return -1;
}
/* parent will wait for the child to complete */
WaitForSingleObject (pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */

CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

3.30

Silberschatz, Galvin and Gagne ©2013

G Process Termination

B Process executes last statement and then asks the operating
system to delete it using the exit () system call.

e Returns status data from child to parent (via wait ())
e Process’ resources are deallocated by operating system

B Parent may terminate the execution of children processes using
the abort () system call. Some reasons for doing so:

e Child has exceeded allocated resources

e Task assigned to child is no longer required

e The parent is exiting and the operating systems does not
allow a child to continue if its parent terminates

AR
= o\\]
7 =
7 W
i ‘- v .
“ 8%

Operating System Concepts — 9t Edition 3.31 Silberschatz, Galvin and Gagne ©2013

GF7 Process Termination

® Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children must
also be terminated.

e cascading termination. All children, grandchildren, etc. are
terminated.

e The termination is initiated by the operating system.

® The parent process may wait for termination of a child process by
using the wait () system call. The call returns status information
and the pid of the terminated process

pid = wait(&status);
®m If no parent waiting (did not invoke wait ()) process is a zombie

m If parent terminated without invoking wait , process is an orphan

AR
T SN
& /‘%-’-L ™
P e
“d ﬁ‘:

Operating System Concepts — 9t Edition 3.32 Silberschatz, Galvin and Gagne ©2013

(_cmmd

1(/‘

‘*’*"f%irfMultiprocess Architecture — Chrome Browser

®m Many web browsers ran as single process (some still do)

e If one web site causes trouble, entire browser can hang or crash
m Google Chrome Browser is multiprocess with 3 categories

e Browser process manages user interface, disk and network 1/0

e Renderer process renders web pages, deals with HTML, Javascript, new one for each website
opened

» Runs in sandbox restricting disk and network 1/O, minimizing effect of security exploits
e Plug-in process for each type of plug-in

m™ f
L) &) @j\‘lﬂley::opera'l:lng System Coo ©0 O BBC - Homepage » E The New York Times - Breal ¢ {? Google Chrome - The web

€« > C O wﬂﬁw.guugle.c’ﬂ{hmme.Fintlf&nfmaf,.fdownload—mac.|1trr1I?brand=¢|§2 / Ll &

\? Chi’Drﬂe hﬁad Features / | English B

Each tab represents a separate process

Operating System Concepts — 9t Edition 3.33 Silberschatz, Galvin and Gagne ©2013

o Interprocess Communication

Processes within a system may be independent or cooperating
Cooperating process can affect or be affected by other processes, including sharing data
m Reasons for cooperating processes:
e Information sharing
e Computation speedup
e Modularity
e Convenience
m Cooperating processes need interprocess communication (IPC)
®m Two models of IPC
e Shared memory
e Message passing

Operating System Concepts — 9t Edition 3.34 Silberschatz, Galvin and Gagne ©2013

p—

(TS i _

N Communications Models
process A process A
process B shared memory |«

process B
message queue
—> Mo My | M2 M3 M, [«
kernel
kernel
(a) (b)

Operating System Concepts — 9t Edition

3.35

,,,,,
< *

o - \
=3
o~ Y

U DA B

Silberschatz, Galvin and Gagne ©2013

55 Cooperating Processes

® Independent process cannot affect or be affected by the execution of another process
m Cooperating process can affect or be affected by the execution of another process

®m Advantages of process cooperation
e Information sharing
e Computation speed-up
e Modularity
e Convenience

Operating System Concepts — 9t Edition 3.36 Silberschatz, Galvin and Gagne ©2013

—

‘-(-‘s.“(-?’f’:w 4 . . i}
#7 " Interprocess Communication — Message Passing

>

®m Mechanism for processes to communicate and to synchronize their actions

B Message system — processes communicate with each other without resorting to shared
variables

m |PC facility provides two operations:
e send(message) — message size fixed or variable
® receive(message)

m |f Pand Q wish to communicate, they need to:
e establish a communication link between them
e exchange messages via send/receive

B Implementation of communication link
e physical (e.g., shared memory, hardware bus)

e logical (e.g., direct or indirect, synchronous or asynchronous, automatic or explicit
buffering)

. _ ‘-ug“"

Sl
’ w: &

“d “Ahghy

Operating System Concepts — 9t Edition 3.37 Silberschatz, Galvin and Gagne ©2013

ot Implementation Questions

® How are links established?

® Can a link be associated with more than two processes?

B How many links can there be between every pair of communicating processes?

m What is the capacity of a link?

m |s the size of a message that the link can accommodate fixed or variable?

B |[s a link unidirectional or bi-directional?

AR
: " i = :.',l‘]

- — .\

: w_‘

“l S

Operating System Concepts — 9t Edition 3.38 Silberschatz, Galvin and Gagne ©2013

o Direct Communication

m Processes must name each other explicitly:
e send (P, message) — send a message to process P
e receive(Q, message) — receive a message from process Q

B Properties of communication link
e Links are established automatically
e Alink is associated with exactly one pair of communicating processes
e Between each pair there exists exactly one link
e The link may be unidirectional, but is usually bi-directional

Operating System Concepts — 9t Edition 3.39 Silberschatz, Galvin and Gagne ©2013

(,ﬂml :

-3

" o Indirect Communication

m Messages are directed and received from mailboxes (also referred to as ports)
e Each mailbox has a unique id
e Processes can communicate only if they share a mailbox

® Properties of communication link
e Link established only if processes share a common mailbox
e Alink may be associated with many processes
e Each pair of processes may share several communication links
e Link may be unidirectional or bi-directional

Operating System Concepts — 9t Edition 3.40 Silberschatz, Galvin and Gagne ©2013

S Indirect Communication

m QOperations
e create a new mailbox
e send and receive messages through mailbox
e destroy a mailbox

® Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

Operating System Concepts — 9t Edition 3.41 Silberschatz, Galvin and Gagne ©2013

(i fﬁe}ml

o Indirect Communication

= N

m Mailbox sharing
e P, P, and P;share mailbox A
e P, sends; P, and P;receive
e Who gets the message?

m Solutions
e Allow a link to be associated with at most two processes
e Allow only one process at a time to execute a receive operation

e Allow the system to select arbitrarily the receiver. Sender is notified who
the receiver was.

-

. o - ,l‘]
. S
2
A O =

ok

Operating System Concepts — 9t Edition 3.42 Silberschatz, Galvin and Gagne ©2013

=

ﬁ,‘.ml

g7 Synchronization

= N

B Message passing may be either blocking or non-blocking
m Blocking is considered synchronous

e Blocking send -- the sender is blocked until the message is
received

e Blocking receive -- the receiver is blocked until a message
Is available

m Non-blocking is considered asynchronous

e Non-blocking send -- the sender sends the message and
continue

e Non-blocking receive -- the receiver receives:
e Avalid message, or
e Null message
m Different combinations possible
e If both send and receive are blocking, we have a rendezvous

Operating System Concepts — 9t Edition 3.43 Silberschatz, Galvin and Gagne ©2013

) mﬁwwiﬂg
5% Producer- Consumer : Shared Memory

= N

PRODUCER:

message next produced;

while (true) {
/* produce an item in next produced */

send (next produced) ;

CONSUMER :

message next consumed;

while (true) {
receive (next consumed)

/* consume the item in next consumed */

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 3.44

=

(' fﬁe}ml h

2 Buffering

B Queue of messages attached to the link; implemented in one of three ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

AR
: " i = :.',l‘]
- — .\
: w_‘
“l S

Operating System Concepts — 9t Edition 3.45 Silberschatz, Galvin and Gagne ©2013

=

ﬁ,‘.mi

~“$%’ Examples of IPC Systems - POSIX

m POSIX Shared Memory

e Process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDRW, 0666)

e Also used to open an existing segment to share it
e Set the size of the object
ftruncate (shm f£d, 4096) ;

e Now the process could write to the shared memory

sprintf (shared memory, "Writing to shared memory") ;

. " o = ,l‘!
. =X W
) v_‘

“d A

Operating System Concepts — 9t Edition 3.46 Silberschatz, Galvin and Gagne ©2013

G IPC POSIX Producer

#include <stdio.h>
#include <stlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE 4096;
/* name of the shared memory object */

const char *name = "Q0S";
/* strings written to shared memory */
const char *message 0 = "Hello";

const char *message 1 = "World!";

/* shared memory file descriptor */
int shm fd;

/* pointer to shared memory obect */
void *ptr;

/* create the shared memory object */
shm fd = shm open(name, O_CREAT | O_RDRW, 0666);

/* configure the size of the shared memory cbject */
ftruncate(shm fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT WRITE, MAP_SHARED, shm fd, 0);

/* write to the shared memory object */
sprintf (ptr, "¥s" ,message 0);

ptr += strlen(message 0);

sprintf (ptr, "¥s" ,message 1);

ptr += strlen(message 1);

return 0;

}
Operating System Concepts — 9t Edition 3.47 Silberschatz, Galvin and Gagne ©201

o IPC POSIX Consumer

#include <stdio.h>
#include <stlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE 40096;
/* name of the shared memory object */

const char *name = "QOS";
/* shared memory file descriptor */
int shm fd;

/* pointer to shared memory obect */
void *ptr;

/* open the shared memory object */
shm fd = shm open(name, O RDONLY, 0666);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT READ, MAP SHARED, shm fd, 0);

/* read from the shared memory object */
printf ("/s", (char *)ptr);

/* remove the shared memory object */
shm unlink(name) ;

return 0;

4y
kil

Operating System Concepts — 9t Edition 3.48 Silberschatz, Galvin and Gagne ©2013

g7 Pipes

m Acts as a conduit allowing two processes to communicate
m |ssues:
e Is communication unidirectional or bidirectional?

e In the case of two-way communication, is it half or full-
duplex?

e Must there exist a relationship (i.e., parent-child) between
the communicating processes?

e Can the pipes be used over a network?

® Ordinary pipes — cannot be accessed from outside the
process that created it. Typically, a parent process creates a
pipe and uses it to communicate with a child process that it
created.

®m Named pipes — can be accessed without a parent-child
relationship.

.-,.'77_ v'- .._..:\
- /‘!».‘.; »
7 e

Ve

Operating System Concepts — 9t Edition 3.49 Silberschatz, Galvin and Gagne ©2013

parent
fd(0) fd(1)

Ordinary pipes are therefore unidirectional

Producer writes to one end (the write-end of the pipe)

_f< pipe

J

®m Windows calls these anonymous pipes

m See Unix and Windows code samples in textbook

Operating System Concepts — 9t Edition 3.50

—

Ordinary Pipes allow communication in standard producer-consumer style

Consumer reads from the other end (the read-end of the pipe)

Require parent-child relationship between communicating processes

child
fd(0)

fd(1)

i
o 3

MR
4 !‘_'.va
L <

Silberschatz, Galvin and Gagne ©2013

S UNIX Pipe Example - 1

#include <stdio.h>

#include <unistd.h>
#define MSGSIZE 16

char* msgl = "hello, world #1"; OUTPUT:
"hello, world #2";

char* msg2
) hello, world #1

hello, world #2

int main() {
char inbuf[MSGSIZE];
int p[2], 1i;

if (pipe(p) < 0)
exit(1l);

write(p[1l], msgl, MSGSIZE); /* write pipe */
write(p[1], msg2, MSGSIZE);

for (A =0; 1 < 2; i++) {
read(p[0], inbuf, MSGSIZE); /* read pipe */
printf("% s\n", inbuf);

}

return 0;

}

e -\'\"‘.}I.
,s*‘jgggg.
F‘_ X
A A

Operating System Concepts — 9t Edition 3.51 Silberschatz, Galvin and Gagne ©2013

5%/ UNIX Pipe Example (Parent-Child) - 2

#define MSGSIZE 16
char* msgl = "hello, world #1";
char* msg2 = "hello, world #2";

OUTPUT:
int main({
char inbuf[MSGSIZE]; hello, world #1
int p[2], pid, nbytes; hello, world #2
if (pipe(p) < 0) Finished reading!
exit(l);
if ((pid = fork(Q) > 0) { /*Parent process*/

write(p[1l], msgl, MSGSIZE);
write(p[1], msg2, MSGSIZE);

close(p[1]); /*Close write end, so child does not wait*/
wait(NULL);

} else { /*Child process*/
close(p[1]); /*Close write end in child, it will not be used*/

while ((nbytes = read(p[0], inbuf, MSGSIZE)) > 0)
printf("% s\n", inbuf);
if (nbytes != 0)
exit(2);
printf("Finished reading!\n");
}

return 0;

}

iy S '\'\l',.-,
~ "
_ 5 = '%
“l u‘i.‘: a

Operating System Concepts — 9t Edition 3.52 Silberschatz, Galvin and Gagne ©2013

®m Named Pipes are more powerful than ordinary pipes

m Communication is bidirectional

® No parent-child relationship is necessary between the communicating processes
B Several processes can use the named pipe for communication

® Provided on both UNIX and Windows systems

m Code example:

a " e = .'_',l‘.!
=)
Foa -

/ v X
‘_'v -

“d “Ahghy

Operating System Concepts — 9t Edition 3.53 Silberschatz, Galvin and Gagne ©2013

-
‘_f ﬁ Communications in Client-Server Systems

B Sockets
B Remote Procedure Calls

Operating System Concepts — 9t Edition 3.54 Silberschatz, Galvin and Gagne ©2013

;;:i Sockets

B A socket is defined as an endpoint for communication
B Concatenation of IP address and port — a number included at

start of message packet to differentiate network services on a
host

B The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

m Communication consists between a pair of sockets

m All ports below 1024 are well known, used for standard
services

m Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running

AR
= o\\]
7 =
7 W
i ‘- v .
“ 8%

Operating System Concepts — 9t Edition 3.55 Silberschatz, Galvin and Gagne ©2013

“GF Socket Communication

host X
(146.86.5.20)

socket
(146.86.5.20:1625)
web server
(161.25.19.8)

socket
(161.25.19.8:80)

-fi.l.. AT

Operating System Concepts — 9t Edition 3.56 Silberschatz, Galvin and Gagne ©2013

