
1

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Process Concept

3.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Process Concept

� Process Concept

� Process Scheduling

� Operations on Processes

� Interprocess Communication

� Examples of IPC Systems

� Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

� To introduce the notion of a process -- a program in execution, which

forms the basis of all computation

� To describe the various features of processes, including scheduling,

creation and termination, and communication

� To explore interprocess communication using shared memory and

message passing

� To describe communication in client-server systems

3.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept

� An operating system executes a variety of programs:

� Batch system – jobs

� Time-shared systems – user programs or tasks

� Textbook uses the terms job and process almost interchangeably

� Process – a program in execution; process execution must progress in sequential fashion

� Multiple parts

� The program code, also called text section

� Current activity including program counter, processor registers

� Stack containing temporary data

� Function parameters, return addresses, local variables

� Data section containing global variables

� Heap containing memory dynamically allocated during run time

� Program is passive entity stored on disk (executable file), process is active

� Program becomes process when executable file loaded into memory

� Execution of program started via GUI mouse clicks, command line entry of its name, etc

� One program can be several processes

� Consider multiple users executing the same program

2

3.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process in Memory

3.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Memory Layout of a C Program

3.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process State

� As a process executes, it changes state

� new: The process is being created

� running: Instructions are being executed

� waiting: The process is waiting for some event to occur

� ready: The process is waiting to be assigned to a processor

� terminated: The process has finished execution

3.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State

3

3.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

Information associated with each process

(also called task control block)

� Process state – running, waiting, etc

� Program counter – location of instruction to next

execute

� CPU registers – contents of all process-centric

registers

� CPU scheduling information- priorities, scheduling

queue pointers

� Memory-management information – memory allocated

to the process

� Accounting information – CPU used, clock time

elapsed since start, time limits

� I/O status information – I/O devices allocated to

process, list of open files

3.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Representation in Linux

� Represented by the C structure task_struct
pid t pid; /* process identifier */

long state; /* state of the process */

unsigned int time slice /* scheduling information */

struct task struct *parent; /* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */

struct mm struct *mm; /* address space of this process */

3.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling

� Maximize CPU use, quickly switch processes onto CPU for time sharing

� Process scheduler selects among available processes for next

execution on CPU

� Maintains scheduling queues of processes

� Job queue – set of all processes in the system

� Ready queue – set of all processes residing in main memory,

ready and waiting to execute

� Device queues – set of processes waiting for an I/O device

� Processes migrate among the various queues

3.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ready Queue And Various

I/O Device Queues

4

3.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

� Queuing diagram represents queues, resources, flows

3.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers

� Long-term scheduler (or job scheduler) – selects which processes should be brought

into the ready queue

� Short-term scheduler (or CPU scheduler) – selects which process should be executed

next and allocates CPU

� Sometimes the only scheduler in a system

� Short-term scheduler is invoked very frequently (milliseconds) ⇒ (must be fast)

� Long-term scheduler is invoked very infrequently (seconds, minutes) ⇒ (may be slow)

� The long-term scheduler controls the degree of multiprogramming

� Processes can be described as either:

� I/O-bound process – spends more time doing I/O than computations, many short

CPU bursts

� CPU-bound process – spends more time doing computations; few very long CPU

bursts

� Long-term scheduler strives for good process mix

3.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Addition of Medium Term Scheduling

� Medium-term scheduler can be added if degree of multiple programming

needs to decrease

� Remove process from memory, store on disk, bring back in from disk

to continue execution: swapping

3.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Context Switch

� When CPU switches to another process, the system must save the state of

the old process and load the saved state for the new process via a context

switch

� Context of a process represented in the PCB

� Context-switch time is overhead; the system does no useful work while

switching

� The more complex the OS and the PCB -> longer the context switch

� Time dependent on hardware support

� Some hardware provides multiple sets of registers per CPU -> multiple

contexts loaded at once

5

3.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

3.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation

� Parent process create children processes, which, in turn create other

processes, forming a tree of processes

� Generally, process identified and managed via a process identifier (pid)

� Resource sharing options

� Parent and children share all resources

� Children share subset of parent’s resources

� Parent and child share no resources

� Execution options

� Parent and children execute concurrently

� Parent waits until children terminate

3.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Tree of Processes in Linux

i ni t

pi d = 1

s s hd

pi d = 3028

l ogi n

pi d = 8415
kt hr e add

pi d = 2

s s hd

pi d = 3610
pdf l us h

pi d = 200

khe l pe r

pi d = 6

t c s c h

pi d = 4005
e mac s

pi d = 9204

bas h

pi d = 8416

ps

pi d = 9298

3.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

� Address space

� Child duplicate of parent

� Child has a program loaded into it

� UNIX examples

� fork() system call creates new process

� exec() system call used after a fork() to replace the process’ memory space with a new

program

6

3.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semantics of fork() and exec()

Difference between fork() and exec() system calls:

� The fork()

� create an exact copy of a running process

� created copy is the child process, the running process is the parent process.

� exec() system

� replace a process image with a new process image.

� no concept of parent and child processes in exec() system call.

� In fork() parent and child processes are executed at the same time.

� In exec() the control does not return to where the exec function was called, it will

execute the new process.

3.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

fork() Sample - 1

int main()

{

int p1;

p1 = fork(); /*fork1*/

printf (“%d\n”, p1);

}

PID=10

PID=11

fork

p1=11

p1 = 0

3.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

fork() Sample- 2

int main()

{

int p1, p2;

p1 = fork(); /*fork1*/

p2 = fork(); /*fork2*/

printf (“%d\n”, p1 + p2);

}

PID=10

PID=12

PID=11

PID=13

fork1

fork2

fork2

p1 = 0

p2 = 13

p1 = 0

p2 = 0

p1 = 11

p2 = 0

p1 = 11

p2 = 12

3.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

fork() ve exec() Sample - 3

/* program1.c *//* program1.c *//* program1.c *//* program1.c */

main()

{

int i, pid;

pid = fork();

if(pid==0)

execlp("./program2","program2","3",NULL);

for (i=0; i<4; i++)

printf("parent\n");

}

7

3.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

fork() ve exec() Kullanımı: prog2

/* program2.c program2.c program2.c program2.c */

main(int argc, char *argv[])

{

int i, son, pid;

son = atoi(argv[1]); /* convert char to integer */

pid = fork();

if (pid==0)

execlp("./program3","program3","2",NULL);

for (i=0; i<son; i++)

printf("child\n");

}

3.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

fork() ve exec() Kullanımı: prog3

/* program3.c program3.c program3.c program3.c */

main(int argc, char *argv[])

{

int i,son;

son = atoi(argv[1]);

for (i=0; i<son; i++)

printf("grandchild\n");

}

3.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

fork() ve exec() Kullanımı

PROG 1

PROG 3

exec(“./program2”)

fork()

PROG 2

PROG 2

PROG 1

fork()

exec (“./program3”)

3.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Use of fork and exec

� UNIX examples

� fork() system call creates new process

� exec() system call used after a fork() to replace the process’ memory space with a new

program

8

3.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

C Program Forking Separate Process

3.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Creating a Separate Process via Windows API

3.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

� Process executes last statement and then asks the operating
system to delete it using the exit() system call.

� Returns status data from child to parent (via wait())

� Process’ resources are deallocated by operating system

� Parent may terminate the execution of children processes using
the abort() system call. Some reasons for doing so:

� Child has exceeded allocated resources

� Task assigned to child is no longer required

� The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates

3.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

� Some operating systems do not allow child to exists if its parent

has terminated. If a process terminates, then all its children must

also be terminated.

� cascading termination. All children, grandchildren, etc. are

terminated.

� The termination is initiated by the operating system.

� The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information

and the pid of the terminated process

pid = wait(&status);

� If no parent waiting (did not invoke wait()) process is a zombie

� If parent terminated without invoking wait , process is an orphan

9

3.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiprocess Architecture – Chrome Browser

� Many web browsers ran as single process (some still do)

� If one web site causes trouble, entire browser can hang or crash

� Google Chrome Browser is multiprocess with 3 categories

� Browser process manages user interface, disk and network I/O

� Renderer process renders web pages, deals with HTML, Javascript, new one for each website

opened

� Runs in sandbox restricting disk and network I/O, minimizing effect of security exploits

� Plug-in process for each type of plug-in

3.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication

� Processes within a system may be independent or cooperating

� Cooperating process can affect or be affected by other processes, including sharing data

� Reasons for cooperating processes:

� Information sharing

� Computation speedup

� Modularity

� Convenience

� Cooperating processes need interprocess communication (IPC)

� Two models of IPC

� Shared memory

� Message passing

3.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications Models

3.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Cooperating Processes

� Independent process cannot affect or be affected by the execution of another process

� Cooperating process can affect or be affected by the execution of another process

� Advantages of process cooperation

� Information sharing

� Computation speed-up

� Modularity

� Convenience

10

3.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Message Passing

� Mechanism for processes to communicate and to synchronize their actions

� Message system – processes communicate with each other without resorting to shared
variables

� IPC facility provides two operations:

� send(message) – message size fixed or variable

� receive(message)

� If P and Q wish to communicate, they need to:

� establish a communication link between them

� exchange messages via send/receive

� Implementation of communication link

� physical (e.g., shared memory, hardware bus)

� logical (e.g., direct or indirect, synchronous or asynchronous, automatic or explicit
buffering)

3.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation Questions

� How are links established?

� Can a link be associated with more than two processes?

� How many links can there be between every pair of communicating processes?

� What is the capacity of a link?

� Is the size of a message that the link can accommodate fixed or variable?

� Is a link unidirectional or bi-directional?

3.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Direct Communication

� Processes must name each other explicitly:

� send (P, message) – send a message to process P

� receive(Q, message) – receive a message from process Q

� Properties of communication link

� Links are established automatically

� A link is associated with exactly one pair of communicating processes

� Between each pair there exists exactly one link

� The link may be unidirectional, but is usually bi-directional

3.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

� Messages are directed and received from mailboxes (also referred to as ports)

� Each mailbox has a unique id

� Processes can communicate only if they share a mailbox

� Properties of communication link

� Link established only if processes share a common mailbox

� A link may be associated with many processes

� Each pair of processes may share several communication links

� Link may be unidirectional or bi-directional

11

3.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

� Operations

� create a new mailbox

� send and receive messages through mailbox

� destroy a mailbox

� Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

3.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

� Mailbox sharing

� P1, P2, and P3 share mailbox A

� P1, sends; P2 and P3 receive

� Who gets the message?

� Solutions

� Allow a link to be associated with at most two processes

� Allow only one process at a time to execute a receive operation

� Allow the system to select arbitrarily the receiver. Sender is notified who

the receiver was.

3.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization

� Message passing may be either blocking or non-blocking

� Blocking is considered synchronous

� Blocking send -- the sender is blocked until the message is

received

� Blocking receive -- the receiver is blocked until a message

is available

� Non-blocking is considered asynchronous

� Non-blocking send -- the sender sends the message and

continue

� Non-blocking receive -- the receiver receives:

� A valid message, or

� Null message

� Different combinations possible

� If both send and receive are blocking, we have a rendezvous

3.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer- Consumer : Shared Memory

PRODUCER:

message next_produced;

while (true) {
/* produce an item in next_produced */

send(next_produced);
}

CONSUMER:

message next_consumed;

while (true) {
receive(next_consumed)

/* consume the item in next_consumed */
}

12

3.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Buffering

� Queue of messages attached to the link; implemented in one of three ways

1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

Sender must wait if link full

3. Unbounded capacity – infinite length

Sender never waits

3.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of IPC Systems - POSIX

� POSIX Shared Memory

� Process first creates shared memory segment
shm_fd = shm_open(name, O CREAT | O RDRW, 0666);

� Also used to open an existing segment to share it

� Set the size of the object

ftruncate(shm fd, 4096);

� Now the process could write to the shared memory

sprintf(shared memory, "Writing to shared memory");

3.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

IPC POSIX Producer

3.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

IPC POSIX Consumer

13

3.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Pipes

� Acts as a conduit allowing two processes to communicate

� Issues:

� Is communication unidirectional or bidirectional?

� In the case of two-way communication, is it half or full-

duplex?

� Must there exist a relationship (i.e., parent-child) between

the communicating processes?

� Can the pipes be used over a network?

� Ordinary pipes – cannot be accessed from outside the

process that created it. Typically, a parent process creates a

pipe and uses it to communicate with a child process that it

created.

� Named pipes – can be accessed without a parent-child

relationship.

3.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ordinary Pipes

� Ordinary Pipes allow communication in standard producer-consumer style

� Producer writes to one end (the write-end of the pipe)

� Consumer reads from the other end (the read-end of the pipe)

� Ordinary pipes are therefore unidirectional

� Require parent-child relationship between communicating processes

� Windows calls these anonymous pipes

� See Unix and Windows code samples in textbook

3.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

UNIX Pipe Example - 1

#include <stdio.h>

#include <unistd.h>

#define MSGSIZE 16

char* msg1 = "hello, world #1";

char* msg2 = "hello, world #2";

int main() {

char inbuf[MSGSIZE];

int p[2]p[2]p[2]p[2], i;

if (pipe(p) pipe(p) pipe(p) pipe(p) < 0)

exit(1);

write(p[1]p[1]p[1]p[1], msg1, MSGSIZEMSGSIZEMSGSIZEMSGSIZE); /* write pipe */

write(p[1]p[1]p[1]p[1], msg2, MSGSIZEMSGSIZEMSGSIZEMSGSIZE);

for (i = 0; i < 2; i++) {

read(p[0]p[0]p[0]p[0], inbuf, MSGSIZEMSGSIZEMSGSIZEMSGSIZE); /* read pipe */

printf("% s\n", inbuf);

}

return 0;

}

OUTPUT:

hello, world #1
hello, world #2

3.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

UNIX Pipe Example (Parent-Child) - 2
#define MSGSIZE 16

char* msg1 = "hello, world #1";

char* msg2 = "hello, world #2";

int main(){

char inbuf[MSGSIZE];

int p[2], pid, nbytes;

if (pipe(p)pipe(p)pipe(p)pipe(p) < 0)

exit(1);

if ((pid = fork()pid = fork()pid = fork()pid = fork()) > 0) { /*Parent process*/

write(p[1]p[1]p[1]p[1], msg1, MSGSIZE);

write(p[1]p[1]p[1]p[1], msg2, MSGSIZE);

close(p[1]);close(p[1]);close(p[1]);close(p[1]); /*Close write end, so child does not wait*/

wait(NULL);

} else { /*Child process*/

close(p[1]);close(p[1]);close(p[1]);close(p[1]); /*Close write end in child, it will not be used*/

while ((nbytesnbytesnbytesnbytes = read(p[0]p[0]p[0]p[0], inbuf, MSGSIZE)) > 0)

printf("% s\n", inbuf);

if (nbytes != 0)

exit(2);

printf("Finished reading!\n");

}

return 0;

}

OUTPUT:

hello, world #1

hello, world #2

Finished reading!

14

3.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Named Pipes

� Named Pipes are more powerful than ordinary pipes

� Communication is bidirectional

� No parent-child relationship is necessary between the communicating processes

� Several processes can use the named pipe for communication

� Provided on both UNIX and Windows systems

� Code example: https://www.geeksforgeeks.org/named-pipe-fifo-example-c-program/

3.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications in Client-Server Systems

� Sockets

� Remote Procedure Calls

3.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Sockets

� A socket is defined as an endpoint for communication

� Concatenation of IP address and port – a number included at

start of message packet to differentiate network services on a

host

� The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8

� Communication consists between a pair of sockets

� All ports below 1024 are well known, used for standard

services

� Special IP address 127.0.0.1 (loopback) to refer to system on

which process is running

3.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket Communication

