
1

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 4: Multithreaded

Programming

4.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 4: Multithreaded Programming

� Overview

� Multicore Programming

� Multithreading Models

� Thread Libraries

� Implicit Threading

� Threading Issues

4.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

� To introduce the notion of a thread—a fundamental unit of CPU utilization that forms the basis of

multithreaded computer systems

� To discuss the APIs for the Pthreads, Windows, and Java thread libraries

� To explore several strategies that provide implicit threading

� To examine issues related to multithreaded programming

� To cover operating system support for threads in Windows and Linux

4.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Motivation

� A thread in computer science is short for a thread of execution. Threads are a way

for a program to divide (termed "split") itself into two or more simultaneously (or

pseudo-simultaneously) running tasks.

� Most modern applications are multithreaded

� Threads run within application

� Multiple tasks with the application can be implemented by separate threads

� Update display

� Fetch data

� Spell checking

� Answer a network request

� Process creation is heavy-weight while thread creation is light-weight

� Can simplify code, increase efficiency

� Kernels are generally multithreaded

2

4.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thread Concept

� Single threaded

application
� Multithreaded application

int main(){
..
f1();
printf(`Done\n`);

}

int f1(){
……
return result;

}

int main(){
..
f2();
printf(`Done\n`);

}

int f2(){
……
return result;

}

int th1(){
……

}

int th2(){
……

}

4.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Single and Multithreaded Processes

4.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreaded Server Architecture

4.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Benefits

� Resource Sharing – threads share resources of process, easier than shared

memory or message passing

� Economy – cheaper than process creation, thread switching lower overhead than

context switching

� Scalability – process can take advantage of multiprocessor architectures

� Responsiveness – may allow continued execution if part of process is blocked,

especially important for user interfaces

3

4.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource Sharing

� All of threads of a process share the same memory space and open files.

� Within the shared memory, each thread gets its own stack.

� Each thread has its own instruction pointer and registers.

� OS has to keep track of processes, and stored its per-process information in a

data structure called a process control block (PCB).

� A multithread-aware OS also needs to keep track of threads.

� The items that the OS must store that are unique to each thread are:

� Thread ID

� Saved registers, stack pointer, instruction pointer

� Stack (local variables, temporary variables, return addresses)

� Signal mask

� Priority (scheduling information)

4.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Programming

� Multicore or multiprocessor systems putting pressure on programmers,

challenges include:

� Dividing activities

� Balance

� Data splitting

� Data dependency

� Testing and debugging

� Parallelism implies a system can perform more than one task simultaneously

� Concurrency supports more than one task making progress

� Single processor / core, scheduler providing concurrency

4.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Concurrency vs. Parallelism

� Concurrent execution on single-core system:

� Parallelism on a multi-core system:

4.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Programming

� Types of parallelism

� Data parallelism – distribute subsets of the same data

across multiple threads/cores, same operation on each

� Task parallelism – distributing threads across cores, each

thread performing unique operation

4

4.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Data and Task Parallelism

4.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Professor P

Copyright © 2010, Elsevier Inc. All rights Reserved

15 questions

300 exams

4.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Professor P’s grading assistants

Copyright © 2010, Elsevier Inc. All rights Reserved

TA#1

TA#2 TA#3

4.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Division of work – data parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

TA#1

TA#2

TA#3

100 exams

100 exams

100 exams

5

4.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Division of work – task parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

TA#1

TA#2

TA#3

Questions 1 - 5

Questions 6 - 10

Questions 11 - 15

4.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Amdahl’s Law

� Identifies performance gains from adding additional cores to an application that has

both serial and parallel components

� S is serial portion

� N processing cores

� I.e. if an application is 25% serial and 75% parallel, moving from 1 to 2 cores results

in speedup of

� So, the speedup will be less than
�

�.���
(�	
.��)

�

=
�

�.���
= 1.6

4.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example

� Assume that a program’s serial execution time is

Tserial = 20 seconds

� We can parallelize 90% of the program.

� Parallelization is “perfect” regardless of the number of cores p we use.

� Runtime of parallelizable part is

Copyright © 2010, Elsevier Inc. All rights Reserved

0.9 x Tserial / p = 18 / p

4.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example (cont.)

� Runtime of “unparallelizable/serial” part is

� Overall parallel run-time is

Copyright © 2010, Elsevier Inc. All rights Reserved

0.1 x Tserial = 0.1 x 20 = 2 seconds

Tparallel = 0.9 x Tserial / p + 0.1 x Tserial = 18 / p + 2

6

4.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example (cont.)

� Speed up factor

Copyright © 2010, Elsevier Inc. All rights Reserved

0.9 x Tserial / p + 0.1 x Tserial

Tserial

S = =

18 / p + 2

20

If p =10;

20 / 3.8 = ~5.25x speed up

4.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Amdahl’s Law

As N approaches infinity, speedup approaches 1 / S
Serial portion of an application has negative effect on performance gained by

adding additional cores

But does the law take into account contemporary multicore systems?

4.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User and Kernel Threads

4.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Threads and Kernel Threads

� User threads - management done by user-level threads library

� Three primary thread libraries:

� POSIX Pthreads

� Win32 threads

� Java threads

� Kernel threads - Supported by the Kernel

� Examples – virtually all general purpose operating systems, including:

� Windows

� Solaris

� Linux

� Tru64 UNIX

� Mac OS X

7

4.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreading Models

� Many-to-One

� One-to-One

� Many-to-Many

4.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Many-to-One

� Many user-level threads mapped to single kernel thread

� One thread blocking causes all to block

� Multiple threads may not run in parallel on muticore system

because only one may be in kernel at a time

� Few systems currently use this model

� Examples:

� Solaris Green Threads

� GNU Portable Threads

4.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

One-to-One

� Each user-level thread maps to kernel thread

� Creating a user-level thread creates a kernel thread

� More concurrency than many-to-one

� Number of threads per process sometimes restricted due to overhead

� Examples

� Windows NT/XP/2000

� Linux

� Solaris 9 and later

4.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Many-to-Many Model

� Allows many user level threads to be mapped to many kernel threads

� Allows the operating system to create a sufficient number of kernel threads

� Solaris prior to version 9

� Windows NT/2000 with the ThreadFiber package

8

4.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Two-level Model

� Similar to M:M, except that it allows a user thread to be bound to kernel

thread

� Examples

� IRIX

� HP-UX

� Tru64 UNIX

� Solaris 8 and earlier

4.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thread Libraries

� Thread library provides programmer with API for creating and managing

threads

� Two primary ways of implementing

� Library entirely in user space

� Kernel-level library supported by the OS

4.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

POSIX threads (Pthreads)

� A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

� Specification, not implementation

� May be provided either as user-level or kernel-level

� API specifies behavior of the thread library, implementation is up to

development of the library

� Common in UNIX operating systems (Solaris, Linux, Mac OS X)

4.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Pthreads Example

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* the thread function*/

int main (int argc, char *argv[])
{

pthread_t tid; /* the thread identifier */
pthread_attr_t attr; /*attributes for the thread */

/* get the default attributes */
pthread_attr_init(&attr);

/* create the thread*/
pthread_create(&tid,&attr,runner,argv[1]);

/* now wait for the thread to exit */
pthread_join(tid,NULL);

printf("sum = %d\n",sum);
}

/* The thread function */

void *runner(void *param)
{

int i, upper = atoi(param);
sum = 0;

if (upper > 0) {
for (i = 1; i <= upper; i++)

sum += i;
}

pthread_exit(0);
}

9

4.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Pthreads Code for Joining 10 Threads

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* the thread */
#define NUM_THREADS 10

int main (int argc, char *argv[])
{

int i;
pthread_t workers[NUM_THREADS]; /* the thread array*/
pthread_attr_t attr; /*attributes for the threads */

sum = 0;
/* get the default attributes */
pthread_attr_init(&attr);

/* create the thread*/
for (i=0; i<NUM_THREADS; i++)

pthread_create(&worker[i], &attr,runner, i+1);

/* now wait for the thread to exit */
for (i=0; i<NUM_THREADS; i++)

pthread_join(worker[i] ,NULL);

printf("sum = %d\n",sum);
}

/* The thread function */

void *runner(void *param)
{

int i, upper = atoi(param);

if (upper > 0) {
for (i = 1; i <= upper; i++)

sum += i;
}

pthread_exit(0);
}

4.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Multithreaded C Program

4.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Multithreaded C Program

4.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Java Threads

� Java threads are managed by the Java Virtual Machine (JVM)

� Typically implemented using the threads model provided by underlying OS

� Java threads may be created by:

� Extending Thread class

� Implementing the Runnable interface

10

4.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Java Multithreaded Program
class Sum
{
private int sum;

public int get() {
return sum;

}

public void set(int sum) {
this.sum = sum;

}
}

class Summation implements Runnable

{
private int upper;
private Sum sumValue;

public Summation(int upper, Sum sumValue) {
this.upper = upper;
this.sumValue = sumValue;

}

public void run() {
int sum = 0;
for (int i = 0; i <= upper; i++)

sum += i;
sumValue.set(sum);

}
}

public class Driver
{
public static void main(String[] args) {

Sum sumObject = new Sum();
int upper = Integer.parseInt(args[0]);

Thread worker = new Thread(new
Summation(upper, sumObject));

worker.start();
try {

worker.join();
System.out.println("The sum of " + upper + " is

" + sumObject.get());
} catch (InterruptedException ie) { }

}
}

4.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implicit Threading

� Growing in popularity as numbers of threads increase, program correctness

more difficult with explicit threads

� Creation and management of threads done by compilers and run-time libraries

rather than programmers

� Three methods explored

� Thread Pools

� OpenMP

� Grand Central Dispatch

� Other methods include Microsoft Threading Building Blocks (TBB),

java.util.concurrent package

4.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thread Pools

� Create a number of threads in a pool where they await work

� Advantages:

� Usually slightly faster to service a request with an existing thread than create a new

thread

� Allows the number of threads in the application(s) to be bound to the size of the pool

� Separating task to be performed from mechanics of creating task allows different

strategies for running task

� i.e.Tasks could be scheduled to run periodically

� Windows API supports thread pools:

4.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

OpenMP

� Set of compiler directives and an API for C,

C++, FORTRAN

� Provides support for parallel programming in

shared-memory environments

� Identifies parallel regions – blocks of code

that can run in parallel

#pragma omp parallel

Create as many threads as there are cores

#pragma omp parallel for
for(i=0;i<N;i++) {

c[i] = a[i] + b[i];

}

Run for loop in parallel

11

4.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Grand Central Dispatch

� Apple technology for Mac OS X and iOS operating systems

� Extensions to C, C++ languages, API, and run-time library

� Allows identification of parallel sections

� Manages most of the details of threading

� Block is in “^{ }” - ˆ{ printf("I am a block"); }

� Blocks placed in dispatch queue

� Assigned to available thread in thread pool when removed from queue

� Two types of dispatch queues:

� serial – blocks removed in FIFO order, queue is per process, called main queue

� Programmers can create additional serial queues within program

� concurrent – removed in FIFO order but several may be removed at a time

� Three system wide queues with priorities low, default, high

4.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Threading Issues

� Semantics of fork() and exec() system calls

� Signal handling

� Synchronous and asynchronous

� Thread cancellation of target thread

� Asynchronous or deferred

� Thread-local storage

4.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semantics of fork() and exec()

� Does fork()duplicate only the calling thread or all threads?

� Some UNIXes have two versions of fork

� Exec() usually works as normal – replace the running process including all threads

4.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Signal Handling
� Signals are used in UNIX systems to notify a process that a particular event has occurred.

� A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default

2. user-defined

� Every signal has default handler that kernel runs when handling signal

� User-defined signal handler can override default

� For single-threaded, signal delivered to process

� Where should a signal be delivered for multi-threaded?

� Deliver the signal to the thread to which the signal applies

� Deliver the signal to every thread in the process

� Deliver the signal to certain threads in the process

� Assign a specific thread to receive all signals for the process

12

4.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thread Cancellation

� Terminating a thread before it has finished

� Thread to be canceled is target thread

� Two general approaches:

� Asynchronous cancellation terminates the target thread immediately

� Deferred cancellation allows the target thread to periodically check if it

should be cancelled

� Pthread code to create and cancel a thread:

4.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thread Cancellation (Cont.)

� Invoking thread requests cancellation, but actual cancellation depends on

thread state

� If thread has cancellation disabled, cancellation remains pending until thread

enables it

� Default type is deferred

� Cancellation only occurs when thread reaches cancellation point

� I.e. pthread_testcancel()

� Then cleanup handler is invoked

� On Linux systems, thread cancellation is handled through signals

4.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thread-Local Storage

� Thread-local storage (TLS) allows each thread to have its

own copy of data

� Different from local variables

� Local variables visible only during single function

invocation

� TLS visible across function invocations

� Similar to static data

� TLS is unique to each thread

� Useful when you do not have control over the thread creation

process (i.e., when using a thread pool)

4.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thanks for listening!

