
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 5: Process

Scheduling

6.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 5: Process Scheduling

� Basic Concepts

� Scheduling Criteria

� Scheduling Algorithms

� Thread Scheduling

� Multiple-Processor Scheduling

� Real-Time CPU Scheduling

� Operating Systems Examples

� Algorithm Evaluation

6.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

� To introduce CPU scheduling, which is the basis for multiprogrammed operating

systems

� To describe various CPU-scheduling algorithms

� To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a

particular system

� To examine the scheduling algorithms of several operating systems

6.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Concepts

� Maximum CPU utilization obtained with

multiprogramming

� CPU–I/O Burst Cycle – Process execution

consists of a cycle of CPU execution and I/O

wait

� CPU burst followed by I/O burst

� CPU burst distribution is of main concern

6.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Histogram of CPU-burst Times

Typically large number of short CPU bursts and a small number of long CPU bursts

An I/O-bound program typically has many short CPU bursts.

A CPU-bound program might have a few long CPU bursts.

6.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Scheduler

� Short-term scheduler selects from among the processes in ready queue, and

allocates the CPU to one of them

� Queue may be ordered in various ways

� CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

� Scheduling under 1 and 4 is nonpreemptive

� All other scheduling is preemptive

� Consider access to shared data

� Consider preemption while in kernel mode

� Consider interrupts occurring during crucial OS activities

6.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dispatcher

� Dispatcher module gives control of the CPU to the process selected by the

short-term scheduler; this involves:

� switching context

� switching to user mode

� jumping to the proper location in the user program to restart that program

� Dispatch latency – time it takes for the dispatcher to stop one process and start

another running

6.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Criteria

� CPU utilization – keep the CPU as busy as possible

� Throughput – # of processes that complete their execution per time unit

� Turnaround time – amount of time to execute a particular process

� Waiting time – amount of time a process has been waiting in the ready queue

� Response time – amount of time it takes from when a request was submitted

until the first response is produced, not output (for time-sharing environment)

6.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Algorithm Optimization Criteria

� Max CPU utilization

� Max throughput

� Min turnaround time

� Min waiting time

� Min response time

6.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

� Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

� Waiting time for

� P1 = 0; P2 = 24; P3 = 27

� Average waiting time:

� (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

6.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

P2 , P3 , P1

� The Gantt chart for the schedule is:

� Waiting time for

� P1 = 6; P2 = 0; P3 = 3

� Average waiting time:

� (6 + 0 + 3)/3 = 3

� Much better than previous case

� Convoy effect - short process behind long process

� Consider one CPU-bound and many I/O-bound processes

P1P3P2

63 300

6.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shortest-Job-First (SJF) Scheduling

� Associate with each process the length of its next CPU burst

� Use these lengths to schedule the process with the shortest time

� SJF is optimal – gives minimum average waiting time for a given set of

processes

� The difficulty is knowing the length of the next CPU request

� Could ask the user

6.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of SJF

ProcessArr l Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

� SJF scheduling chart

� Average waiting time =

� (3 + 16 + 9 + 0) / 4 = 7

P4
P3P1

3 160 9

P2

24

6.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Determining Length of Next CPU Burst

� Can only estimate the length – should be similar to the previous one

� Then pick process with shortest predicted next CPU burst

� Can be done by using the length of previous CPU bursts, using exponential

averaging

� Commonly, α set to ½

� Preemptive version called shortest-remaining-time-first

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.

≤≤

=

=

+

αα

τ 1n

th
n nt

() .1
1 nnn

t ταατ −+=
=

6.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Prediction of the Length of the

Next CPU Burst

6.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Exponential Averaging

� α =0

� τn+1 = τn

� Recent history does not count

� α =1

� τn+1 = α tn

� Only the actual last CPU burst counts

� If we expand the formula, we get:

τn+1 = α tn+(1 - α)α tn -1 + …

+(1 - α)jα tn -j + …

+(1 - α)n +1 τ0

� Since both α and (1 - α) are less than or equal to 1, each successive term has
less weight than its predecessor

6.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Shortest-remaining-time-first

� Now we add the concepts of varying arrival times and preemption to the analysis

ProcessA arri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

� Preemptive SJF Gantt Chart

� Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

P1
P1P2

1 170 10

P3

265

P4

6.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Scheduling

� A priority number (integer) is associated with each process

� The CPU is allocated to the process with the highest priority (smallest integer ≡

highest priority)

� Preemptive

� Nonpreemptive

� SJF is priority scheduling where priority is the inverse of predicted next CPU

burst time

� Problem ≡ Starvation – low priority processes may never execute

� Solution ≡ Aging – as time progresses increase the priority of the process

6.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Priority Scheduling

ProcessA arri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

� Priority scheduling Gantt Chart

� Average waiting time =

8.2 msec

P2 P3P5

1 180 16

P4

196

P1

6.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Round Robin (RR)

� Each process gets a small unit of CPU time (time quantum q), usually 10-100

milliseconds. After this time has elapsed, the process is preempted and added

to the end of the ready queue.

� If there are n processes in the ready queue and the time quantum is q, then

each process gets 1/n of the CPU time in chunks of at most q time units at

once. No process waits more than (n-1)q time units.

� Timer interrupts every quantum to schedule next process

� Performance

� q large ⇒ FIFO

� q small ⇒ q must be large with respect to context switch, otherwise

overhead is too high

6.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

� The Gantt chart is:

� Typically, higher average turnaround than SJF, but better response

� q should be large compared to context switch time

� q usually 10ms to 100ms, context switch < 10 usec

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

6.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Time Quantum and Context Switch Time

6.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Turnaround Time Varies With

The Time Quantum

80% of CPU bursts should
be shorter than q

6.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue

� Ready queue is partitioned into separate queues, eg:

� foreground (interactive)

� background (batch)

� Process permanently in a given queue

� Each queue has its own scheduling algorithm:

� foreground – RR

� background – FCFS

� Scheduling must be done between the queues:

� Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.

� Time slice – each queue gets a certain amount of CPU time which it can

schedule amongst its processes;

� i.e., 80% to foreground in RR, 20% to background in FCFS

6.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue Scheduling

6.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Feedback Queue

� A process can move between the various queues; aging can be

implemented this way

� Multilevel-feedback-queue scheduler defined by the following parameters:

� number of queues

� scheduling algorithms for each queue

� method used to determine when to upgrade a process

� method used to determine when to demote a process

� method used to determine which queue a process will enter when that

process needs service

6.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue

� Three queues:

� Q0 – RR with time quantum 8 milliseconds

� Q1 – RR time quantum 16 milliseconds

� Q2 – FCFS

� Scheduling

� A new job enters queue Q0 which is served RR

� When it gains CPU, job receives 8 milliseconds

� If it does not finish in 8 milliseconds, job is moved to queue

Q1

� At Q1 job is again served RR and receives 16 additional

milliseconds

� If it still does not complete, it is preempted and moved to

queue Q2

6.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiple-Processor Scheduling

� CPU scheduling more complex when multiple CPUs are available

� Homogeneous processors within a multiprocessor

� Asymmetric multiprocessing – only one processor accesses the system data

structures, alleviating the need for data sharing

� Symmetric multiprocessing (SMP) – each processor is self-scheduling, all

processes in common ready queue, or each has its own private queue of ready

processes

� Currently, most common

� Processor affinity – process has affinity for processor on which it is currently running

� soft affinity

� hard affinity

� Variations including processor sets

6.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity

6.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiple-Processor Scheduling – Load Balancing

� If SMP, need to keep all CPUs loaded for efficiency

� Load balancing attempts to keep workload evenly distributed

� Push migration – periodic task checks load on each processor,

and if found pushes task from overloaded CPU to other CPUs

� Pull migration – idle processors pulls waiting task from busy

processor

6.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Processors

� Recent trend to place multiple processor cores on same physical

chip

� Faster and consumes less power

� Multiple threads per core also growing

� Takes advantage of memory stall to make progress on another

thread while memory retrieve happens

6.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreaded Multicore System

6.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time CPU Scheduling

� Can present obvious challenges

� Soft real-time systems – no

guarantee as to when critical real-time

process will be scheduled

� Hard real-time systems – task must

be serviced by its deadline

� Two types of latencies affect

performance

1. Interrupt latency – time from arrival

of interrupt to start of routine that

services interrupt

2. Dispatch latency – time for

schedule to take current process

off CPU and switch to another

6.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time CPU Scheduling (Cont.)

� Conflict phase of dispatch

latency:

1. Preemption of any

process running in

kernel mode

2. Release by low-priority

process of resources

needed by high-priority

processes

6.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority-based Scheduling

� For real-time scheduling, scheduler must support preemptive, priority-based

scheduling

� But only guarantees soft real-time

� For hard real-time must also provide ability to meet deadlines

� Processes have new characteristics: periodic ones require CPU at constant intervals

� Has processing time t, deadline d, period p

� 0 ≤ t ≤ d ≤ p

� Rate of periodic task is 1/p

6.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Rate Monotonic Scheduling

� A priority is assigned based on the inverse of its period

� Shorter periods = higher priority;

� Longer periods = lower priority

� P1 is assigned a higher priority than P2.

burst period

P1 20 50

P2 35 100

6.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Missed Deadlines with

Rate Monotonic Scheduling

burst period

P1 25 50

P2 35 80

6.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Earliest Deadline First Scheduling (EDF)

� Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;

the later the deadline, the lower the priority

burst period

P1 25 50

P2 35 80

6.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Examples

� Linux scheduling

� Windows scheduling

� Read 6.7.1 and 6.7.2

6.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Scheduling Through Version 2.5

� Prior to kernel version 2.5, ran variation of standard UNIX scheduling algorithm

� Version 2.5 moved to constant order O(1) scheduling time

� Preemptive, priority based

� Two priority ranges: time-sharing and real-time

� Real-time range from 0 to 99 and nice value from 100 to 140

� Map into global priority with numerically lower values indicating higher priority

� Higher priority gets larger q

� Task run-able as long as time left in time slice (active)

� If no time left (expired), not run-able until all other tasks use their slices

� All run-able tasks tracked in per-CPU runqueue data structure

� Two priority arrays (active, expired)

� Tasks indexed by priority

� When no more active, arrays are exchanged

� Worked well, but poor response times for interactive processes

6.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Scheduling in Version 2.6.23 +

� Completely Fair Scheduler (CFS)

� Scheduling classes

� Each has specific priority

� Scheduler picks highest priority task in highest scheduling class

� Rather than quantum based on fixed time allotments, based on proportion of CPU
time

� 2 scheduling classes included, others can be added

1. default

2. real-time

� Quantum calculated based on nice value from -20 to +19

� Lower value is higher priority

� Calculates target latency – interval of time during which task should run at least once

� Target latency can increase if say number of active tasks increases

� CFS scheduler maintains per task virtual run time in variable vruntime

� Associated with decay factor based on priority of task – lower priority is higher decay
rate

� Normal default priority yields virtual run time = actual run time

� To decide next task to run, scheduler picks task with lowest virtual run time

6.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CFS Performance

6.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Scheduling (Cont.)

� Real-time scheduling according to POSIX.1b

� Real-time tasks have static priorities

� Real-time plus normal map into global priority scheme

� Nice value of -20 maps to global priority 100

� Nice value of +19 maps to priority 139

6.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Scheduling

� Windows uses priority-based preemptive scheduling

� Highest-priority thread runs next

� Dispatcher is scheduler

� Thread runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority

thread

� Real-time threads can preempt non-real-time

� 32-level priority scheme

� Variable class is 1-15, real-time class is 16-31

� Priority 0 is memory-management thread

� Queue for each priority

� If no run-able thread, runs idle thread

6.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Priority Classes

� Win32 API identifies several priority classes to which a process can belong

� REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,

BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

� All are variable except REALTIME

� A thread within a given priority class has a relative priority

� TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL, LOWEST, IDLE

� Priority class and relative priority combine to give numeric priority

� Base priority is NORMAL within the class

� If quantum expires, priority lowered, but never below base

� If wait occurs, priority boosted depending on what was waited for

� Foreground window given 3x priority boost

� Windows 7 added user-mode scheduling (UMS)

� Applications create and manage threads independent of kernel

� For large number of threads, much more efficient

� UMS schedulers come from programming language libraries like C++ Concurrent Runtime

(ConcRT) framework

6.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Priorities

