
Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Chapter(9:((Virtual/Memory(
Management

9.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Chapter(9:(Virtual/Memory(Management

■ Background
■ Demand Paging
■ Copy-on-Write
■ Page Replacement
■ Allocation of Frames
■ Thrashing
■ Memory-Mapped Files
■ Allocating Kernel Memory
■ Other Considerations
■ Operating-System Examples

9.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Objectives

■ To describe the benefits of a virtual memory system

■ To explain the concepts of demand paging, page-replacement algorithms, and
allocation of page frames

■ To discuss the principle of the working-set model

9.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Background

■ Code needs to be in memory to execute, but entire program rarely used
● Error code, unusual routines, large data structures

■ Entire program code not needed at same time
■ Consider ability to execute partially-loaded program

● Program no longer constrained by limits of physical memory
● Program and programs could be larger than physical memory

9.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Background

■ Virtual memory – separation of user logical memory from physical memory
● Only part of the program needs to be in memory for execution
● Logical address space can therefore be much larger than physical address

space
● Allows address spaces to be shared by several processes
● Allows for more efficient process creation
● More programs running concurrently
● Less I/O needed to load or swap processes

■ Virtual memory can be implemented via:
● Demand paging
● Demand segmentation

9.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Virtual(Memory(That(is(
Larger(Than(Physical(Memory

9.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Virtual(address,Space

9.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Virtual(Address(Space

■ Enables sparse address spaces with holes left for growth, dynamically linked
libraries, etc

■ System libraries shared via mapping into virtual address space
■ Shared memory by mapping pages read-write into virtual address space
■ Pages can be shared during fork(), speeding process creation

9.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Shared'Library'Using'Virtual'Memory

9.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Demand'Paging
■ Could bring entire process into memory at load time
■ Or bring a page into memory only when it is needed

● Less I/O needed, no unnecessary I/O
● Less memory needed
● Faster response
● More users

■ Page is needed ! reference to it
● invalid reference ! abort
● not-in-memory ! bring to memory

■ Lazy swapper – never swaps a page into memory unless page will be needed
● Swapper that deals with pages is a pager

9.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Transfer(of(a(Paged(Memory(to(
Contiguous(Disk(Space

9.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Valid&Invalid*Bit
■ With each page table entry a valid–invalid bit is associated

(v ! in-memory – memory resident, i ! not-in-memory)
■ Initially valid–invalid bit is set to i on all entries
■ Example of a page table snapshot:

■ During address translation, if valid–invalid bit in page table entry
is I ! page fault

v
v
v

v
i

i
i

….

Frame # valid-invalid bit

page table

9.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Page%Table%When%Some%Pages%
Are%Not%in%Main%Memory

9.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Page%Fault

■ If there is a reference to a page, first reference to that page will trap to operating
system:

page fault
1. Operating system looks at another table to decide:

● Invalid reference ! abort
● Just not in memory

2. Get empty frame
3. Swap page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault

9.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Aspects'of'Demand'Paging

■ Extreme case – start process with no pages in memory
● OS sets instruction pointer to first instruction of process, non-memory-resident ->

page fault
● And for every other process pages on first access
● Pure demand paging

■ Actually, a given instruction could access multiple pages -> multiple page faults
● Pain decreased because of locality of reference

■ Hardware support needed for demand paging
● Page table with valid / invalid bit
● Secondary memory (swap device with swap space)
● Instruction restart

9.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Steps&in&Handling&a&Page&Fault

9.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Performance*of*Demand*Paging
■ Stages in Demand Paging
1. Trap to the operating system
2. Save the user registers and process state
3. Determine that the interrupt was a page fault
4. Check that the page reference was legal and determine the location of the page on the disk
5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user
7. Receive an interrupt from the disk I/O subsystem (I/O completed)
8. Save the registers and process state for the other user
9. Determine that the interrupt was from the disk
10. Correct the page table and other tables to show page is now in memory
11. Wait for the CPU to be allocated to this process again
12. Restore the user registers, process state, and new page table, and then resume the interrupted

instruction

9.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Performance*of*Demand*Paging*(Cont.)

■ Page Fault Rate 0 ! p ! 1
● if p = 0 no page faults
● if p = 1, every reference is a fault

■ Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead

)

9.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Demand'Paging'Example

■ Memory access time = 200 nanoseconds
■ Average page-fault service time = 8 milliseconds

■ EAT = (1 – p) x 200 + p (8 milliseconds)
= (1 – p x 200 + p x 8,000,000
= 200 + p x 7,999,800

■ If one access out of 1,000 causes a page fault, then EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!

■ If want performance degradation < 10 percent
● 220 > 200 + 7,999,800 x p

20 > 7,999,800 x p
● p < .0000025
● < one page fault in every 400,000 memory accesses

9.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Demand'Paging'Optimizations

■ Copy entire process image to swap space at process load time
● Then page in and out of swap space
● Used in older BSD Unix

■ Demand page in from program binary on disk, but discard rather than paging out
when freeing frame
● Used in Solaris and current BSD

9.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Copy%on%Write

■ Copy-on-Write (COW) allows both parent and child processes to initially share
the same pages in memory
● If either process modifies a shared page, only then is the page copied

■ COW allows more efficient process creation as only modified pages are copied
■ In general, free pages are allocated from a pool of zero-fill-on-demand pages

● Why zero-out a page before allocating it?
■ vfork() variation on fork() system call has parent suspend and child using

copy-on-write address space of parent
● Designed to have child call exec()
● Very efficient

9.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Before&Process&1&Modifies&Page&C

9.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

After&Process&1&Modifies&Page&C

9.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

What%Happens%if%There%is%no%Free%Frame?

■ Used up by process pages
■ Also in demand from the kernel, I/O buffers, etc
■ How much to allocate to each?

■ Page replacement – find some page in memory, but not really in use, page it out
● Algorithm – terminate? swap out? replace the page?
● Performance – want an algorithm which will result in minimum number of

page faults

■ Same page may be brought into memory several times

9.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Page%Replacement

■ Prevent over-allocation of memory by modifying page-fault service routine to
include page replacement

■ Use modify (dirty) bit to reduce overhead of page transfers – only modified
pages are written to disk

■ Page replacement completes separation between logical memory and physical
memory – large virtual memory can be provided on a smaller physical memory

9.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

NeedForPage$Replacement

9.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Basic&Page&Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to select a

victim frame
- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page and frame
tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing EAT

9.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Page%Replacement

9.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Page%and%Frame%Replacement%Algorithms

■ Frame-allocation algorithm determines
● How many frames to give each process
● Which frames to replace

■ Page-replacement algorithm
● Want lowest page-fault rate on both first access and re-access

■ Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string
● String is just page numbers, not full addresses
● Repeated access to the same page does not cause a page fault

■ In all our examples, the reference string is
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

9.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Graph&of&Page&Faults&Versus&
The&Number&of&Frames

9.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

First&In&First&Out+(FIFO)+Algorithm
■ Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

■ 3 frames (3 pages can be in memory at a time per process)

■ Adding more frames can cause more page faults!
● Belady’s Anomaly

■ How to track ages of pages?
● Just use a FIFO queue

9.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

FIFO$Page$Replacement

9.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

FIFO$Illustrating$Belady’s$Anomaly

9.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Optimal(Algorithm

■ Replace page that will not be used for longest period of time
● 9 is optimal for the example on the next slide

■ How do you know this?
● Can’t read the future

■ Used for measuring how well your algorithm performs

9.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Optimal(Page(Replacement

9.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Least&Recently&Used&(LRU)&Algorithm

■ Use past knowledge rather than future
■ Replace page that has not been used in the most amount of time
■ Associate time of last use with each page

■ 12 faults – better than FIFO but worse than OPT
■ Generally good algorithm and frequently used
■ But how to implement?

9.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

LRU$Algorithm$(Cont.)

■ Counter implementation
● Every page entry has a counter; every time page is referenced through this

entry, copy the clock into the counter
● When a page needs to be changed, look at the counters to find smallest value

! Search through table needed
■ Stack implementation

● Keep a stack of page numbers in a double link form:
● Page referenced:

! move it to the top
! requires 6 pointers to be changed

● But each update more expensive
● No search for replacement

■ LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly

9.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

UseOfA$Stack$to$Record$The$
Most$Recent$Page$References

9.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

LRU$Approximation$Algorithms
■ LRU needs special hardware and still slow
■ Reference bit

● With each page associate a bit, initially = 0
● When page is referenced bit set to 1
● Replace any with reference bit = 0 (if one exists)

! We do not know the order, however
■ Second-chance algorithm

● Generally FIFO, plus hardware-provided reference bit
● Clock replacement
● If page to be replaced has

! Reference bit = 0 -> replace it
! reference bit = 1 then:

– set reference bit 0, leave page in memory
– replace next page, subject to same rules

9.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Second'Chance+(clock)+Page'Replacement+Algorithm

9.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Counting(Algorithms

■ Keep a counter of the number of references that have been made to each page
● Not common

■ LFU Algorithm: replaces page with smallest count

■ MFU Algorithm: based on the argument that the page with the smallest count
was probably just brought in and has yet to be used

9.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Allocation)of)Frames

■ Each process needs minimum number of frames
■ Example: IBM 370 – 6 pages to handle SS MOVE instruction:

● instruction is 6 bytes, might span 2 pages
● 2 pages to handle from
● 2 pages to handle to

■ Maximum of course is total frames in the system
■ Two major allocation schemes

● fixed allocation
● priority allocation

■ Many variations

9.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Fixed&Allocation

■ Equal allocation – For example, if there are 100 frames (after allocating
frames for the OS) and 5 processes, give each process 20 frames
● Keep some as free frame buffer pool

■ Proportional allocation – Allocate according to the size of process
● Dynamic as degree of multiprogramming, process sizes change

m
S
spa

m
sS

ps

i
ii

i

ii

!==

=
"=

=

!for!allocation!

frames!of!number!total!

!process!of!size!

m = 64
s1 =10
s2 =127

a1 =
10
137

! 64 " 5

a2 =
127
137

! 64 " 59

9.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Priority'Allocation

■ Use a proportional allocation scheme using priorities rather than size

■ If process Pi generates a page fault,
● select for replacement one of its frames
● select for replacement a frame from a process with lower priority number

9.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Global&vs.&Local&Allocation

■ Global replacement – process selects a replacement frame from the set of all
frames; one process can take a frame from another
● But then process execution time can vary greatly
● But greater throughput so more common

■ Local replacement – each process selects from only its own set of allocated
frames
● More consistent per-process performance
● But possibly underutilized memory

9.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Thrashing

■ If a process does not have “enough” pages, the page-fault rate is very high
● Page fault to get page
● Replace existing frame
● But quickly need replaced frame back
● This leads to:

! Low CPU utilization
! Operating system thinking that it needs to increase the degree of

multiprogramming
! Another process added to the system

■ Thrashing ! a process is busy swapping pages in and out

9.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Thrashing)(Cont.)

9.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Demand'Paging'and'Thrashing'

■ Why does demand paging work?
Locality model
● Process migrates from one locality to another
● Localities may overlap

■ Why does thrashing occur?
! size of locality > total memory size
● Limit effects by using local or priority page replacement

9.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Locality)In)A)Memory1Reference)Pattern

9.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Working(Set,Model

■ ! " working-set window " a fixed number of page references
Example: 10,000 instructions

■ WSSi (working set of Process Pi) =
total number of pages referenced in the most recent ! (varies in time)
● if ! too small will not encompass entire locality
● if ! too large will encompass several localities
● if ! = # $ will encompass entire program

■ D = % WSSi " total demand frames
● Approximation of locality

■ if D > m $ Thrashing

■ Policy if D > m, then suspend or swap out one of the processes

9.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Working(set,model

9.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Keeping'Track'of'the'Working'Set

■ Approximate with interval timer + a reference bit

■ Example: ! = 10,000
● Timer interrupts after every 5000 time units
● Keep in memory 2 bits for each page
● Whenever a timer interrupts copy and sets the values of all reference bits to

0
● If one of the bits in memory = 1 " page in working set

■ Why is this not completely accurate?

■ Improvement = 10 bits and interrupt every 1000 time units

9.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Page%Fault*Frequency

■ More direct approach than WSS
■ Establish “acceptable” page-fault frequency rate and use local

replacement policy
● If actual rate too low, process loses frame
● If actual rate too high, process gains frame

9.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Working(Sets(and(Page(Fault(Rates

9.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Memory'Mapped+Files

■ Memory-mapped file I/O allows file I/O to be treated as routine memory access
by mapping a disk block to a page in memory

■ A file is initially read using demand paging
● A page-sized portion of the file is read from the file system into a physical

page
● Subsequent reads/writes to/from the file are treated as ordinary memory

accesses
■ Simplifies and speeds file access by driving file I/O through memory rather than

read() and write() system calls
■ Also allows several processes to map the same file allowing the pages in

memory to be shared
■ But when does written data make it to disk?

● Periodically and / or at file close() time
● For example, when the pager scans for dirty pages

9.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Memory'Mapped+File+Technique+for+all+I/O

■ Some OSes uses memory mapped files for standard I/O
■ Process can explicitly request memory mapping a file via mmap() system call

● Now file mapped into process address space
■ For standard I/O (open(), read(), write(), close()), mmap anyway

● But map file into kernel address space
● Process still does read() and write()

! Copies data to and from kernel space and user space
● Uses efficient memory management subsystem

! Avoids needing separate subsystem
■ COW can be used for read/write non-shared pages
■ Memory mapped files can be used for shared memory (although again via separate

system calls)

9.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Memory'Mapped'Files

9.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts Essentials – 9th Edition

Memory'Mapped+Shared+Memory+
in+Windows

