
1

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter(10:(File(System

11.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter(10:(File(System

■ File Concept
■ Access Methods
■ Disk and Directory Structure
■ File-System Mounting
■ File Sharing
■ Protection

11.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

■ To explain the function of file systems

■ To describe the interfaces to file systems

■ To discuss file-system design tradeoffs, including access methods, file
sharing, file locking, and directory structures

■ To explore file-system protection

11.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File%Concept

■ Contiguous logical address space

■ Types:
● Data

! numeric
! character
! binary

● Program

■ Contents defined by file’s creator
● Many types

! Consider text file, source file, executable file

2

11.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File%Attributes

■ Name – only information kept in human-readable form
■ Identifier – unique tag (number) identifies file within file system
■ Type – needed for systems that support different types
■ Location – pointer to file location on device
■ Size – current file size
■ Protection – controls who can do reading, writing, executing
■ Time, date, and user identification – data for protection, security, and

usage monitoring
■ Information about files are kept in the directory structure, which is

maintained on the disk
■ Many variations, including extended file attributes such as file checksum
■ Information kept in the directory structure

11.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File%info%Window%on%Mac%OS%X

11.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File%Operations

■ File is an abstract data type
■ Create
■ Write – at write pointer location
■ Read – at read pointer location
■ Reposition within file - seek
■ Delete
■ Truncate
■ Open(Fi) – search the directory structure on disk for entry Fi, and move

the content of entry to memory
■ Close (Fi) – move the content of entry Fi in memory to directory

structure on disk

11.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Open%Files

■ Several pieces of data are needed to manage open files:
● Open-file table: tracks open files
● File pointer: pointer to last read/write location, per process that

has the file open
● File-open count: counter of number of times a file is open – to

allow removal of data from open-file table when last processes
closes it

● Disk location of the file: cache of data access information
● Access rights: per-process access mode information

3

11.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Open%File%Locking

■ Provided by some operating systems and file systems
● Similar to reader-writer locks
● Shared lock similar to reader lock – several processes can acquire

concurrently
● Exclusive lock similar to writer lock

■ Mediates access to a file

■ Mandatory or advisory:
● Mandatory – access is denied depending on locks held and

requested
● Advisory – processes can find status of locks and decide what to

do

11.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File%Locking%Example%– Java%API
import java.io.*;
import java.nio.channels.*;
public class LockingExample {

public static final boolean EXCLUSIVE = false;
public static final boolean SHARED = true;
public static void main(String arsg[]) throws IOException {

FileLock sharedLock = null;
FileLock exclusiveLock = null;
try {

RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");

// get the channel for the file
FileChannel ch = raf.getChannel();

// this locks the first half of the file - exclusive
exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);

/** Now modify the data . . . */
// release the lock
exclusiveLock.release();

11.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File%Locking%Example%–
Java%API%(Cont.)

// this locks the second half of the file - shared
sharedLock = ch.lock(raf.length()/2+1, raf.length(), SHARED);

/** Now read the data . . . */
// release the lock
sharedLock.release();

} catch (java.io.IOException ioe) {
System.err.println(ioe);

}finally {
if (exclusiveLock != null)
exclusiveLock.release();
if (sharedLock != null)
sharedLock.release();

}
}

}

11.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File%Types%– Name,%Extension

4

11.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File%Structure

■ None - sequence of words, bytes
■ Simple record structure

● Lines
● Fixed length
● Variable length

■ Complex Structures
● Formatted document
● Relocatable load file

■ Can simulate last two with first method by inserting appropriate control
characters

■ Who decides:
● Operating system
● Program

11.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Sequential*access-File

11.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access%Methods

■ Sequential Access
read next
write next
reset
no read after last write

(rewrite)
■ Direct Access – file is fixed length logical records

read n
write n
position to n

read next
write next

rewrite n
n = relative block number

■ Relative block numbers allow OS to decide where file should be placed
● See allocation problem in Ch 11

11.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Simulation*of*Sequential*Access*on*
Direct3access*File

5

11.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Other&Access&Methods

■ Can be built on top of base methods
■ General involve creation of an index for the file
■ Keep index in memory for fast determination of location of data to be

operated on (consider UPC code plus record of data about that item)
■ If too large, index (in memory) of the index (on disk)
■ IBM indexed sequential-access method (ISAM)

● Small master index, points to disk blocks of secondary index
● File kept sorted on a defined key
● All done by the OS

■ VMS operating system provides index and relative files as another example
(see next slide)

11.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example(of(Index(and(Relative(Files

11.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Directory)Structure

■ A collection of nodes containing information about all files

F 1 F 2 F 3
F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

11.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Disk%Structure

■ Disk can be subdivided into partitions
■ Disks or partitions can be RAID protected against failure
■ Disk or partition can be used raw – without a file system, or formatted

with a file system
■ Partitions also known as minidisks, slices
■ Entity containing file system known as a volume
■ Each volume containing file system also tracks that file system�s info

in device directory or volume table of contents
■ As well as general-purpose file systems there are many special-

purpose file systems, frequently all within the same operating system
or computer

6

11.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A"Typical"File,system"Organization

11.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types&of&File&Systems

■ We mostly talk of general-purpose file systems
■ But systems frequently have may file systems, some general- and

some special- purpose
■ Consider Solaris has

● tmpfs – memory-based volatile FS for fast, temporary I/O
● objfs – interface into kernel memory to get kernel symbols for

debugging
● ctfs – contract file system for managing daemons
● lofs – loopback file system allows one FS to be accessed in place

of another
● procfs – kernel interface to process structures
● ufs, zfs – general purpose file systems

11.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operations+Performed+on+Directory

■ Search for a file

■ Create a file

■ Delete a file

■ List a directory

■ Rename a file

■ Traverse the file system

11.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Organize)the)Directory)(Logically))to)Obtain

■ Efficiency – locating a file quickly

■ Naming – convenient to users
● Two users can have same name for different files
● The same file can have several different names

■ Grouping – logical grouping of files by properties, (e.g., all Java
programs, all games, …)

7

11.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Single'Level*Directory

■ A single directory for all users

Naming problem

Grouping problem

11.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Two$Level)Directory

■ Separate directory for each user

■ Path name
■ Can have the same file name for different user
■ Efficient searching
■ No grouping capability

11.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Tree$Structured*Directories

11.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Tree$Structured*Directories*(Cont.)

■ Efficient searching

■ Grouping Capability

■ Current directory (working directory)
● cd /spell/mail/prog

● type list

8

11.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Tree$Structured*Directories*(Cont)

■ Absolute or relative path name
■ Creating a new file is done in current directory
■ Delete a file

rm <file-name>
■ Creating a new subdirectory is done in current directory

mkdir <dir-name>
Example: if in current directory /mail

mkdir count

mail

prog copy prt exp count

Deleting �mail�! deleting the entire subtree rooted by �mail�

11.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File%System%Mounting

■ A file system must be mounted before it can be accessed

■ A unmounted file system (i.e., Fig. 10-11(b)) is mounted at a
mount point

users

/

bill fred

help

sue jane

prog
doc

(a) (b)

11.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mount&Point

11.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File%Sharing

■ Sharing of files on multi-user systems is desirable

■ Sharing may be done through a protection scheme

■ On distributed systems, files may be shared across a network

■ Network File System (NFS) is a common distributed file-sharing method

■ If multi-user system
● User IDs identify users, allowing permissions and protections to be per-

user
Group IDs allow users to be in groups, permitting group access rights

● Owner of a file / directory
● Group of a file / directory

9

11.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File%Sharing%– Remote%File%Systems

■ Uses networking to allow file system access between systems
● Manually via programs like FTP
● Automatically, seamlessly using distributed file systems
● Semi automatically via the world wide web

■ Client-server model allows clients to mount remote file systems from
servers
● Server can serve multiple clients
● Client and user-on-client identification is insecure or complicated
● NFS is standard UNIX client-server file sharing protocol
● CIFS is standard Windows protocol
● Standard operating system file calls are translated into remote calls

■ Distributed Information Systems (distributed naming services) such
as LDAP, DNS, NIS, Active Directory implement unified access to
information needed for remote computing

11.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File%Sharing%– Failure%Modes

■ All file systems have failure modes
● For example corruption of directory structures or other non-user

data, called metadata

■ Remote file systems add new failure modes, due to network failure,
server failure

■ Recovery from failure can involve state information about status of
each remote request

■ Stateless protocols such as NFS v3 include all information in each
request, allowing easy recovery but less security

11.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File%Sharing%– Consistency%Semantics

■ Specify how multiple users are to access a shared file simultaneously
● Similar to Ch 6 process synchronization algorithms

! Tend to be less complex due to disk I/O and network latency
(for remote file systems

● Andrew File System (AFS) implemented complex remote file
sharing semantics

● Unix file system (UFS) implements:
! Writes to an open file visible immediately to other users of the

same open file
! Sharing file pointer to allow multiple users to read and write

concurrently
● AFS has session semantics

! Writes only visible to sessions starting after the file is closed

11.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Protection

■ File owner/creator should be able to control:
● what can be done
● by whom

■ Types of access
● Read
● Write
● Execute
● Append
● Delete
● List

10

11.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access%Lists%and%Groups

■ Mode of access: read, write, execute
■ Three classes of users on Unix / Linux

RWX
a) owner access 7 ! 1 1 1

RWX
b) group access 6 ! 1 1 0

RWX
c) public access 1 ! 0 0 1

■ Ask manager to create a group (unique name), say G, and add
some users to the group.

■ For a particular file (say game) or subdirectory, define an
appropriate access.

owner group public

chmod 761 game

Attach&a&group&to&a&file
chgrp G game

11.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows(7(Access-Control(List(Management

11.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A"Sample"UNIX"Directory"Listing

