
27.5.2019

1

Silberschatz, Galvin and Gagne ©2013Operating System Concepts– 99h Edition

Chapter 11: Implementing File

Systems

12.2 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Chapter 11: Implementing File Systems

� File-System Structure

� File-System Implementation

� Directory Implementation

� Allocation Methods

� Free-Space Management

� Efficiency and Performance

� Recovery

� NFS

� Example: WAFL File System

12.3 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Objectives

� To describe the details of implementing local file systems and directory

structures

� To describe the implementation of remote file systems

� To discuss block allocation and free-block algorithms and trade-offs

12.4 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

File-System Structure

� File structure

� Logical storage unit

� Collection of related information

� File system resides on secondary storage (disks)

� Provided user interface to storage, mapping logical to physical

� Provides efficient and convenient access to disk by allowing data to be

stored, located retrieved easily

� Disk provides in-place rewrite and random access

� I/O transfers performed in blocks of sectors (usually 512 bytes)

� File control block – storage structure consisting of information about a file

� Device driver controls the physical device

� File system organized into layers

27.5.2019

2

12.5 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Layered File System

12.6 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

File System Layers

� Device drivers manage I/O devices at the I/O control layer

� Given commands like “read drive1, cylinder 72, track 2, sector 10, into memory

location 1060” outputs low-level hardware specific commands to hardware

controller

� Basic file system given command like “retrieve block 123” translates to device

driver

� Also manages memory buffers and caches (allocation, freeing, replacement)

� Buffers hold data in transit

� Caches hold frequently used data

� File organization module understands files, logical address, and physical blocks

� Translates logical block # to physical block #

� Manages free space, disk allocation

12.7 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

File System Layers (Cont.)

� Logical file system manages metadata information

� Translates file name into file number, file handle, location by maintaining file

control blocks (inodes in Unix)

� Directory management

� Protection

� Layering useful for reducing complexity and redundancy, but adds overhead and can

decrease performance

� Logical layers can be implemented by any coding method according to OS

designer

� Many file systems, sometimes many within an operating system

� Each with its own format (CD-ROM is ISO 9660; Unix has UFS, FFS; Windows

has FAT, FAT32, NTFS as well as floppy, CD, DVD Blu-ray, Linux has more than

40 types, with extended file system ext2 and ext3 leading; plus distributed file

systems, etc)

� New ones still arriving – ZFS, GoogleFS, Oracle ASM, FUSE

12.8 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

File-System Implementation

� We have system calls at the API level, but how do we implement their

functions?

� On-disk and in-memory structures

� Boot control block contains info needed by system to boot OS from that

volume

� Needed if volume contains OS, usually first block of volume

� Volume control block (superblock, master file table) contains volume

details

� Total # of blocks, # of free blocks, block size, free block pointers or array

� Directory structure organizes the files

� Names and inode numbers, master file table

� Per-file File Control Block (FCB) contains many details about the file

� Inode number, permissions, size, dates

� NFTS stores into in master file table using relational DB structures

27.5.2019

3

12.9 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

A Typical File Control Block

12.10 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

In-Memory File System Structures

� Mount table storing file system mounts, mount points, file system types

� The following figure illustrates the necessary file system structures provided by the operating

systems

� Figure 11-3(a) refers to opening a file

� Figure 11-3(b) refers to reading a file

� Plus buffers hold data blocks from secondary storage

� Open returns a file handle for subsequent use

� Data from read eventually copied to specified user process memory address

12.11 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

In-Memory File System Structures

12.12 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Partitions and Mounting

� Partition can be a volume containing a file system (“cooked”) or raw – just a

sequence of blocks with no file system

� Boot block can point to boot volume or boot loader set of blocks that contain enough

code to know how to load the kernel from the file system

� Or a boot management program for multi-os booting

� Root partition contains the OS, other partitions can hold other Oses, other file

systems, or be raw

� Mounted at boot time

� Other partitions can mount automatically or manually

� At mount time, file system consistency checked

� Is all metadata correct?

� If not, fix it, try again

� If yes, add to mount table, allow access

27.5.2019

4

12.13 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Virtual File Systems

� Virtual File Systems (VFS) on Unix provide an object-oriented way of

implementing file systems

� VFS allows the same system call interface (the API) to be used for different

types of file systems

� Separates file-system generic operations from implementation details

� Implementation can be one of many file systems types, or network file

system

� Implements vnodes which hold inodes or network file details

� Then dispatches operation to appropriate file system implementation

routines

� The API is to the VFS interface, rather than any specific type of file system

12.14 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Schematic View of Virtual File System

12.15 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Virtual File System Implementation

� For example, Linux has four object types:

� inode, file, superblock, dentry

� VFS defines set of operations on the objects that must be implemented

� Every object has a pointer to a function table

� Function table has addresses of routines to implement that function on that

object

12.16 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Directory Implementation

� Linear list of file names with pointer to the data blocks

� Simple to program

� Time-consuming to execute

� Linear search time

� Could keep ordered alphabetically via linked list or use B+ tree

� Hash Table – linear list with hash data structure

� Decreases directory search time

� Collisions – situations where two file names hash to the same location

� Only good if entries are fixed size, or use chained-overflow method

27.5.2019

5

12.17 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Allocation Methods - Contiguous

� An allocation method refers to how disk blocks are allocated for files:

� Contiguous allocation – each file occupies set of contiguous blocks

� Best performance in most cases

� Simple – only starting location (block #) and length (number of blocks) are

required

� Problems include finding space for file, knowing file size, external

fragmentation, need for compaction off-line (downtime) or on-line

12.18 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Contiguous Allocation of Disk Space

12.19 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Extent-Based Systems

� Many newer file systems (i.e., Veritas File System) use a modified contiguous

allocation scheme

� Extent-based file systems allocate disk blocks in extents

� An extent is a contiguous block of disks

� Extents are allocated for file allocation

� A file consists of one or more extents

12.20 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Allocation Methods - Linked

� Linked allocation – each file a linked list of blocks

� File ends at nil pointer

� No external fragmentation

� Each block contains pointer to next block

� No compaction, external fragmentation

� Free space management system called when new block needed

� Improve efficiency by clustering blocks into groups but increases internal

fragmentation

� Reliability can be a problem

� Locating a block can take many I/Os and disk seeks

� FAT (File Allocation Table) variation

� Beginning of volume has table, indexed by block number

� Much like a linked list, but faster on disk and cacheable

� New block allocation simple

27.5.2019

6

12.21 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Linked Allocation

� Each file is a linked list of disk blocks: blocks may be scattered anywhere on

the disk

pointerblock =

12.22 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Linked Allocation

12.23 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

File-Allocation Table

12.24 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Allocation Methods - Indexed

� Indexed allocation

� Each file has its own index block(s) of pointers to its data blocks

� Logical view

index table

27.5.2019

7

12.25 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Example of Indexed Allocation

12.26 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Indexed Allocation – Mapping (Cont.)

M

outer-index

index table file

12.27 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Combined Scheme: UNIX UFS

(4K bytes per block, 32-bit addresses)

Note: More index
blocks than can

be addressed
with 32-bit file
pointer

12.28 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Performance

� Best method depends on file access type

� Contiguous great for sequential and random

� Linked good for sequential, not random

� Declare access type at creation -> select either contiguous or linked

� Indexed more complex

� Single block access could require 2 index block reads then data block read

� Clustering can help improve throughput, reduce CPU overhead

27.5.2019

8

12.29 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Performance (Cont.)

� Adding instructions to the execution path to save one disk I/O is reasonable

� Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000 MIPS

� http://en.wikipedia.org/wiki/Instructions_per_second

� Typical disk drive at 250 I/Os per second

� 159,000 MIPS / 250 = 630 million instructions during one disk I/O

� Fast SSD drives provide 60,000 IOPS

� 159,000 MIPS / 60,000 = 2.65 millions instructions during one disk I/O

12.30 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Free-Space Management

� File system maintains free-space list to track available blocks/clusters

� (Using term “block” for simplicity)

� Bit vector or bit map (n blocks)

…

0 1 2 n-1

bit[i] =

6
7

8 1 ⇒ block[i] free

0 ⇒ block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

12.31 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Free-Space Management (Cont.)

� Bit map requires extra space

� Example:

block size = 4KB = 212 bytes

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 bits (or 256 MB)

if clusters of 4 blocks -> 64MB of memory

� Easy to get contiguous files

� Linked list (free list)

� Cannot get contiguous space easily

� No waste of space

� No need to traverse the entire list (if # free blocks recorded)

12.32 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Linked Free Space List on Disk

27.5.2019

9

12.33 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Free-Space Management (Cont.)

� Grouping

� Modify linked list to store address of next n-1 free blocks in first free block, plus a
pointer to next block that contains free-block-pointers (like this one)

� Counting

� Because space is frequently contiguously used and freed, with contiguous-
allocation allocation, extents, or clustering

� Keep address of first free block and count of following free blocks

� Free space list then has entries containing addresses and counts

12.34 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Efficiency and Performance

� Efficiency dependent on:

� Disk allocation and directory algorithms

� Types of data kept in file’s directory entry

� Pre-allocation or as-needed allocation of metadata structures

� Fixed-size or varying-size data structures

12.35 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Efficiency and Performance (Cont.)

� Performance

� Keeping data and metadata close together

� Buffer cache – separate section of main memory for frequently used

blocks

� Synchronous writes sometimes requested by apps or needed by OS

� No buffering / caching – writes must hit disk before acknowledgement

� Asynchronous writes more common, buffer-able, faster

� Free-behind and read-ahead – techniques to optimize sequential access

� Reads frequently slower than writes

12.36 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Page Cache

� A page cache caches pages rather than disk blocks using virtual memory

techniques and addresses

� Memory-mapped I/O uses a page cache

� Routine I/O through the file system uses the buffer (disk) cache

� This leads to the following figure

27.5.2019

10

12.37 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

I/O Without a Unified Buffer Cache

12.38 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Unified Buffer Cache

� A unified buffer cache uses the same page cache to cache both memory-

mapped pages and ordinary file system I/O to avoid double caching

� But which caches get priority, and what replacement algorithms to use?

12.39 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

I/O Using a Unified Buffer Cache

12.40 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Recovery

� Consistency checking – compares data in directory structure with data blocks

on disk, and tries to fix inconsistencies

� Can be slow and sometimes fails

� Use system programs to back up data from disk to another storage device

(magnetic tape, other magnetic disk, optical)

� Recover lost file or disk by restoring data from backup

27.5.2019

11

12.41 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Log Structured File Systems

� Log structured (or journaling) file systems record each metadata update to

the file system as a transaction

� All transactions are written to a log

� A transaction is considered committed once it is written to the log

(sequentially)

� Sometimes to a separate device or section of disk

� However, the file system may not yet be updated

� The transactions in the log are asynchronously written to the file system

structures

� When the file system structures are modified, the transaction is removed

from the log

� If the file system crashes, all remaining transactions in the log must still be

performed

� Faster recovery from crash, removes chance of inconsistency of metadata

12.42 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

The Sun Network File System (NFS)

� An implementation and a specification of a software system for accessing

remote files across LANs (or WANs)

� The implementation is part of the Solaris and SunOS operating systems running

on Sun workstations using an unreliable datagram protocol (UDP/IP protocol

and Ethernet

12.43 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

NFS (Cont.)

� Interconnected workstations viewed as a set of independent machines with
independent file systems, which allows sharing among these file systems in a
transparent manner

� A remote directory is mounted over a local file system directory

� The mounted directory looks like an integral subtree of the local file
system, replacing the subtree descending from the local directory

� Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to be provided

� Files in the remote directory can then be accessed in a transparent
manner

� Subject to access-rights accreditation, potentially any file system (or
directory within a file system), can be mounted remotely on top of any local
directory

12.44 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

NFS (Cont.)

� NFS is designed to operate in a heterogeneous environment of different

machines, operating systems, and network architectures; the NFS

specifications independent of these media

� This independence is achieved through the use of RPC primitives built on top of

an External Data Representation (XDR) protocol used between two

implementation-independent interfaces

� The NFS specification distinguishes between the services provided by a mount

mechanism and the actual remote-file-access services

27.5.2019

12

12.45 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Three Independent File Systems

12.46 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Mounting in NFS

Mounts Cascading mounts

12.47 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

NFS Mount Protocol

� Establishes initial logical connection between server and client

� Mount operation includes name of remote directory to be mounted and name of

server machine storing it

� Mount request is mapped to corresponding RPC and forwarded to mount

server running on server machine

� Export list – specifies local file systems that server exports for mounting,

along with names of machines that are permitted to mount them

� Following a mount request that conforms to its export list, the server returns a

file handle—a key for further accesses

� File handle – a file-system identifier, and an inode number to identify the

mounted directory within the exported file system

� The mount operation changes only the user’s view and does not affect the

server side

12.48 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

NFS Protocol

� Provides a set of remote procedure calls for remote file operations. The
procedures support the following operations:

� searching for a file within a directory

� reading a set of directory entries

� manipulating links and directories

� accessing file attributes

� reading and writing files

� NFS servers are stateless; each request has to provide a full set of arguments
(NFS V4 is just coming available – very different, stateful)

� Modified data must be committed to the server’s disk before results are returned
to the client (lose advantages of caching)

� The NFS protocol does not provide concurrency-control mechanisms

27.5.2019

13

12.49 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Three Major Layers of NFS Architecture

� UNIX file-system interface (based on the open, read, write, and close calls,

and file descriptors)

� Virtual File System (VFS) layer – distinguishes local files from remote ones, and

local files are further distinguished according to their file-system types

� The VFS activates file-system-specific operations to handle local requests

according to their file-system types

� Calls the NFS protocol procedures for remote requests

� NFS service layer – bottom layer of the architecture

� Implements the NFS protocol

12.50 Silberschatz, Galvin and Gagne ©20Operating System Concepts – 9th Edition

Schematic View of NFS Architecture

