Basic Ciphers
Ahmet Burak Can
Hacettepe University
abc@hacettepe.edu.tr

Books
- Textbook:
- Supplementary books:
 ◦ Handbook of Applied Cryptography. A. Menezes, P. van Oorschot and S. Vanstone. CRC Press

Outline of the Course
- Basic ciphers
- Block ciphers, Encryption modes and Stream ciphers
- Hash functions, message digests, HMAC
- Number Theory, Public Key Cryptography, RSA
- Digital certificates and signatures, X509
- Authentication: Two-Three factor authentication, Biometrics, Smart Cards
- Security Handshake
- Real-time Communication Security, SSL/TLS, IPSEC
- Kerberos

Outline of the Course
- Threshold cryptography
- Operating System Security
- Malicious Software: Trojans, logic bombs, viruses, worms, botnets, rootkits, trapdoors and cover channels
- Firewalls, VPNs, Intrusion detection systems
- If time permits:
 ◦ Program Security
 ◦ HTTP and Web Application Security, XSS
 ◦ Wireless Security: WEP and WPA
Which Security Concept?

Computer Security

Network Security

Computer Security

Information Security

- Computer Security:
 - Ensure security of data kept on the computer

- Network Security:
 - Ensure security of communication over insecure medium

- Approaches to Secure Communication
 - Steganography
 - hides the existence of a message
 - Cryptography
 - hide the meaning of a message

Basic Security Goals

- Privacy (secrecy, confidentiality)
 - only the intended recipient can see the communication

- Authenticity (integrity)
 - the communication is generated by the alleged sender

- Authorization
 - limit the resources that a user can access

- Availability
 - make the services available 99.999…% of time

- Non-repudiation
 - no party can refuse the validity of its actions

- Auditing
 - Take a log of everything done in the system

Basic Terminology in Cryptography – 1

- Cryptography: the study of mathematical techniques related to aspects of providing information security services.

- Cryptanalysis: the study of mathematical techniques for attempting to defeat information security services.

- Cryptology: the study of cryptography and cryptanalysis.
Basic Terminology in Cryptography – 2

- **Encryption (encipherment):** the process of transforming information (plaintext) using an algorithm (cipher) to make it unreadable to anyone except those possessing special knowledge.
- **Decryption (decipherment):** the process of making the encrypted information readable again.
- **Key:** the special knowledge shared between communicating parties.
- **Plaintext:** the data to be concealed.
- **Ciphertext:** the result of encryption on the plaintext.

Breaking Ciphers

- There are different methods of breaking a cipher, depending on:
 - the type of information available to the attacker
 - the interaction with the cipher machine
 - the computational power available to the attacker

Breaking Ciphers – Attack Types

- **Ciphertext-only attack:** The cryptanalyst knows only the ciphertext. Sometimes the language of the plaintext is also known.
 - The goal is to find the plaintext and the key.
 - Any encryption scheme vulnerable to this type of attack is considered to be completely insecure.
- **Known-plaintext attack:** The cryptanalyst knows one or several pairs of ciphertext and the corresponding plaintext.
 - The goal is to find the key used to encrypt these messages or a way to decrypt any new messages that use that key.
Breaking Ciphers - Attack Types

- **Chosen-plaintext attack**: The cryptanalyst can choose a number of messages and obtain the ciphertexts for them.
 - The goal is to deduce the key used in the other encrypted messages or decrypt any new messages using that key.
- **Chosen-ciphertext attack**: Similar to the chosen-plaintext attack, but the cryptanalyst can choose a number of ciphertexts and obtain the plaintexts.

Today's Ciphers

- Shift Cipher
- Mono-alphabetical Substitution Cipher
- Polyalphabetical Substitution Ciphers
- Rotor Machine
- Enigma

Shift Cipher

- A substitution cipher
- The Key Space:
 - \([1 .. 25]\)
- Encryption given a key \(K\):
 - each letter in the plaintext \(P\) is replaced with the \(K\)'th letter following corresponding number (shift right)
- Decryption given \(K\):
 - shift left

History:
- \(K = 3\), Caesar's cipher

Shift Cipher: An Example

\[
\begin{array}{cccccccccccccccccccc}
\end{array}
\]

\(P = \text{CRYPTOGRAPHYISFUN}\)
\(K = 11\)
\(C = \text{NCJAVZRCLASJTDQFY}\)

\[
\begin{array}{llllll}
C & \rightarrow & 2 & 2+11 \mod 26 &= 13 & \rightarrow \ N \\
R & \rightarrow & 17 & 17+11 \mod 26 &= 2 & \rightarrow \ C \\
& \vdots & & & & \\
N & \rightarrow & 13 & 13+11 \mod 26 &= 24 & \rightarrow \ Y \\
\end{array}
\]
Shift Cipher: Cryptanalysis

- Can an attacker find K?
 - YES: exhaustive search,
 - key space is small (\(\leq 26\) possible keys)
 - the attacker can search all the key space in very short time
- Once K is found, very easy to decrypt

General Mono-alphabetical Substitution Cipher

- The key space: all permutations of \(\Sigma = \{A, B, C, \ldots, Z\}\)
- Encryption given a key \(\Pi\):
 - each letter \(X\) in the plaintext P is replaced with \(\Pi(X)\)
- Decryption given a key \(\Pi\):
 - each letter \(Y\) in the ciphertext P is replaced with \(\Pi^{-1}(Y)\)

Example:

\[
\begin{align*}
A &\rightarrow B \\
B &\rightarrow A \\
C &\rightarrow D \\
D &\rightarrow C \\
E &\rightarrow F \\
F &\rightarrow E \\
G &\rightarrow H \\
H &\rightarrow G \\
I &\rightarrow J \\
J &\rightarrow I \\
K &\rightarrow L \\
L &\rightarrow K \\
M &\rightarrow N \\
N &\rightarrow M \\
O &\rightarrow P \\
P &\rightarrow O \\
Q &\rightarrow R \\
R &\rightarrow Q \\
S &\rightarrow T \\
T &\rightarrow S \\
U &\rightarrow V \\
V &\rightarrow U \\
W &\rightarrow X \\
X &\rightarrow W \\
Y &\rightarrow Z \\
Z &\rightarrow Y
\end{align*}
\]

BECAUSE \(\rightarrow\) AZDBJSZ

General Substitution Cipher: Cryptanalysis

- Exhaustive search is infeasible
 - for the letter A, there are 26 probabilities
 - for the letter B, there are 25 probabilities
 - for the letter C, there are 24 probabilities
 - \(\ldots\) and so on
- Key space size is \(26! \approx 4^{10^{26}}\)

Cryptanalysis of Substitution Ciphers: Frequency Analysis

- Basic ideas:
 - Each language has certain features: frequency of letters, or of groups of two or more letters.
 - Substitution ciphers preserve the language features.
 - Substitution ciphers are vulnerable to frequency analysis attacks.
- History of frequency analysis:
 - Earliest known description of frequency analysis is in a book by the ninth-century scientist al-Kindi
 - Rediscovered or introduced from the Arabs in the Europe during the Renaissance
Frequency Features of English

- Vowels, which constitute 40% of plaintext, are often separated by consonants.
- Letter A is often found in the beginning of a word or second from last.
- Letter I is often third from the end of a word.
- Letter Q is followed only by U
- Some words are more frequent, such as the, and, at, is, on, in

Cryptanalysis using Frequency Analysis

- The number of different ciphertext characters or combinations are counted to determine the frequency of usage.
- The cipher text is examined for patterns, repeated series, and common combinations.
- Replace ciphertext characters with possible plaintext equivalents using known language characteristics.
- Frequency analysis made substitution cipher insecure

Improve the Security of Substitution Cipher

- Using nulls
 - e.g., using numbers from 1 to 99 as the ciphertext alphabet, some numbers representing nothing are inserted randomly
- Deliberately misspell words
 - e.g., “Thys haz thi ifekkt off diztaughting thi ballans off frikwensesas”
- Homophonic substitution cipher
 - each letter is replaced by a variety of substitutes
- These make frequency analysis more difficult, but not impossible

Summary

- Shift ciphers are easy to break using brute force attacks, they have small key space.
- Substitution ciphers preserve language features and are vulnerable to frequency analysis attacks.
Polyalphabetic Substitution Ciphers

- Main weaknesses of monoalphabetic substitution ciphers
 - Each letter in the ciphertext corresponds to only one letter in the plaintext letter.

- Idea for a stronger cipher (1460's by Alberti)
 - Use more than one cipher alphabet and switch between them when encrypting different letters.
 - Developed into a practical cipher by Vigenère (published in 1586).

The Vigenère Cipher

- **Definition:**
 - Given m, a positive integer, $P = C = (\mathbb{Z}_{26})^n$, and $K = (k_1, k_2, \ldots, k_m)$ a key, we define:

- **Encryption:**
 - $E_k(p_1, p_2, \ldots, p_m) = (p_1+k_1, p_2+k_2, \ldots, p_m+k_m) \pmod{26}$

- **Decryption:**
 - $D_k(c_1, c_2, \ldots, c_m) = (c_1-k_1, c_2-k_2, \ldots, c_m-k_m) \pmod{26}$

Example:

Plaintext: C R Y P T O G R A P H Y

Key: L U C K L U C K L U C K

Ciphertext: N L A Z E I I B L J J I

Security of Vigenère Cipher

- Vigenère masks the frequency with which a character appears in a language:
 - One letter in the ciphertext corresponds to multiple letters in the plaintext.
 - Makes the use of frequency analysis more difficult.

- Any message encrypted by a Vigenère cipher is a collection of as many shift ciphers as there are letters in the key.

Vigenere Cipher: Cryptanalysis

- Find the **length of the key.**
 - Divide the message into that many shift cipher encryptions.
 - Use frequency analysis to solve the resulting shift ciphers.

- Vigenère cipher is vulnerable: once the key length is found, a cryptanalyst can apply frequency analysis.

- **How to Find the Key Length?**
 - For Vigenere, as the length of the keyword increases, the letter frequency shows less English-like characteristics and becomes more random.
 - Two methods to find the key length:
 - Kasiski test
 - Index of coincidence (Friedman)
Kasisk Test

- Two identical segments of plaintext will be encrypted to the same ciphertext, if they occur in the text at the distance Δ, $\Delta \equiv 0 \pmod{m}$, m is the key length.
- Algorithm:
 - Search for pairs of identical segments of length at least 3
 - Record distances between the two segments: $\Delta_1, \Delta_2, \ldots$
 - m divides $\gcd(\Delta_1, \Delta_2, \ldots)$

\[
\begin{array}{c|c}
\text{PT} & \text{T H E S U N A N D T H E M A N I N T H E M O O N} \\
\text{Key} & \text{K I N G K I N G K I N G K I N G K I N G K I N G} \\
\text{CT} & \text{D P R Y E V N T N B U K W I A O X B U K W W B T} \\
\end{array}
\]

Rotor Machines-1

- Basic idea: if the key in Vigenere cipher is very long, then the attacks won’t work
- Implementation idea: multiple rounds of substitution
- A machine consists of multiple cylinders
 - each cylinder has 26 states, at each state it is a substitution cipher: the wiring between the contacts implements a fixed substitution of letters
 - each cylinder rotates to change states according to different schedule changing the substitution

Rotor Machines-2

- A m-cylinder rotor machine has 26^m different substitution ciphers
 - $26^2 = 17576$
 - $26^3 = 456,976$
 - $26^4 = 11,881,376$

Enigma Machine

- Patented by Scherius in 1918
 - Came on the market in 1923, weighted 50 kg (about 110 lbs), later cut down to 12kg (about 26 lbs)
 - It cost about $30,000 in today’s prices
 - $34 \times 28 \times 15$ cm
- Widely used by the Germans from 1926 to the end of second world war
 - First successfully broken by Polish in the thirties by exploiting the repeating of the message key and knowledge of the machine design
 - During the WW II, Enigma was broken by Alan Turing (1912 - 1954) in the UK intelligence. He was an English mathematician, logician and cryptographer, father of modern computer science.
Enigma

- Use 3 scramblers (rotors): 17,576 substitutions
- 3 scramblers can be used in any order: 6 combinations
- Plug board: allowed 6 pairs of letters to be swapped before the scramblers process started and after it ended.
- Total number of keys ≈ 10^{16}
- Later versions use 5 rotors and 10 pairs of letters

Key Mapping

- A reflector enables to map a character twice with each rotor
- First rotor rotates after each key press
- Second rotor rotates after first had a complete revolution,
 and so on

Encrypting with Enigma

- Machine was designed under the assumption that the adversary may get access to the machine
- Daily key: The settings for the rotors and plug boards changed daily according to a codebook received by all operators
 - A day key has the form
 - Scrambler arrangement: 2-3-1
 - Scrambler starting position: Q-C-W
- Message key: Each message was encrypted with a unique key defined by the position of the 3 rotors

How to Break the Enigma Machine?

- Recover 3 secrets
 - Internal connections for the 3 rotors
 - Daily keys
 - Message keys
- With 2 months of day keys and Enigma usage instructions, the Polish mathematician Rejewski succeeded to reconstruct the internal wiring
Lessons Learned From Breaking Enigma

- Keeping a machine (i.e., a cipher algorithm) secret does not help
 - The Kerckhoff’s principle
 - Security through obscurity doesn’t work
- Large number of keys are not sufficient
- Known plaintext attack was easy to mount
- Key management was the weakest link
- People were also the weakest link
- Even a strong cipher, when used incorrectly, can be broken

Kerckhoff’s Principle

- Auguste Kerckhoff (1835 – 1903) was a Dutch linguist and cryptographer who was professor of languages at the School of Higher Commercial Studies in Paris in the late 19th century.
- The security of a protocol should rely only on the secrecy of the keys, protocol designs should be made public. (1883)
 - Secrecy of a protocol does not work