Basic Ciphers

Books

- Textbook:

Ahmet Burak Can
Network Security: Private Communication in a Public World, 2nd
Hacettepe University
abc@hacettepe.edu.tr
Edition. C. Kaufman, R. PerIman, and M. Speciner, Prentice-Hall

- Security in Computing. C. P. Pfleeger and S. L. Pfleeger, Prentice Hall
- Supplementary books:
- Applied Cryptography: Protocols, Algorithms, and Source Code in C, B. Schneier, John Wiley \& Sons.
- Handbook of Applied Cryptography. A. Menezes, P. van Oorschot and S.Vanstone. CRC Press
- Security Engineering:A Guide to Building Dependable Distributed Systems, Ross J.Anderson, JohnWiley \& Sons

Outline of the Course

- Basic ciphers
- Block ciphers, Encryption modes and Stream ciphers
- Hash functions, message digests, HMAC
- Number Theory, Public Key Cryptography, RSA

Outline of the Course

- Threshold cryptography
- Operating System Security
- Malicious Software:Trojans, logic bombs, viruses, worms,botnets, rootkits, trapdoors and cover channels
- Firewalls,VPNs, Intrusion detection systems
- Auhentication:Two-Three factor authentication, Biometrics, Smart Cards
- If time permits:
- Security Handshake
- Program Security
- Real-time Communication Security, SSL/TLS, IPSEC

HTTP and Web Application Security, XSS

- Kerberos
- Wireless Security:WEP and WPA

Which Security Concept?

Information Security

- Computer Security:

Ensure security of data kept on the computer

- Network Security:

Ensure security of communication over insecure medium

- Approaches to Secure Communication
- Steganography
- hides the existence of a message

Cryptography
hide the meaning of a message

Basic Security Goals

Basic Terminology in Cryptography - I

- Privacy (secrecy, confidentiality)
only the intended recipient can see the communication
- Cryptography: the study of mathematical techniques related to aspects of providing information security
- Authenticity (integrity)
- the communication is generated by the alleged sender
- Authorization
limit the resources that a user can access
- Availability
make the services available 99.999...\% of time
- Non-repudiation
no party can refuse the validity of its actions
- Auditing

Take a log of everything done in the system
services.

- Cryptanalysis: the study of mathematical techniques for attempting to defeat information security services.
- Cryptology: the study of cryptography and cryptanalysis.

Basic Terminology in Cryptography - 2

Encryption \& Decryption

- Encryption (encipherment): the process of transforming information (plaintext) using an algorithm (cipher) to make it unreadable to anyone except those possessing special knowledge
- Decryption (decipherment): the process of making the encrypted information readable again
- Key: the special knowledge shared between communicating parties
- Plaintext: the data to be concealed.
- Ciphertext: the result of encryption on the plaintext

Breaking Ciphers

Breaking Ciphers - Attack Types

- Ciphertext-only attack: The cryptanalyst knows only the ciphertext. Sometimes the language of the plaintext is also known.
- The goal is to find the plaintext and the key.
- Any encryption scheme vulnerable to this type of attack is considered to be completely insecure.
- Known-plaintext attack: The cryptanalyst knows one or several pairs of ciphertext and the corresponding plaintext.

The goal is to find the key used to encrypt these messages or a way to decrypt any new messages that use that key.

Breaking Ciphers - Attack Types

- Chosen-plaintext attack : The cryptanalyst can choose a number of messages and obtain the ciphertexts for them
The goal is to deduce the key used in the other encrypted messages or decrypt any new messages using that key.
- Chosen-ciphertext attack: Similar to the chosenplaintext attack, but the cryptanalyst can choose a number of ciphertexts and obtain the plaintexts.

Today's Ciphers

- Shift Cipher
- Mono-alphabetical Substitution Cipher
- Polyalphabetic Substitution Ciphers
- Rotor Machine
- Enigma

Shift Cipher

- A substitution cipher
- The Key Space:
[1 .. 25]
- Encryption given a key K:
each letter in the plaintext P is replaced with the K 'th letter following corresponding number (shift right)
- Decryption given K:
shift left
- History:
- $K=3$, Caesar's cipher

Shift Cipher:An Example

AbCDEFGHIJ K L M N O P Q R S TUVWXYZ
012345678910111213141516171819202122232425
$P=C R Y P T O G R A P H Y I S F U N$
$K=I I$
$C=$ NCJAVZRCLASJTDQFY
$\mathrm{C} \rightarrow 2 \quad 2+11 \bmod 26=13 \rightarrow \mathrm{~N}$
$R \rightarrow I 7 \quad|7+I| \bmod 26=2 \rightarrow C$
...
$N \rightarrow 13 \quad|3+| | \bmod 26=24 \rightarrow Y$

Shift Cipher: Cryptanalysis

- Can an attacker find K ?
- YES: exhaustive search,
key space is small (<= 26 possible keys)
- the attacker can search all the key space in very short time
- Once K is found, very easy to decrypt

General Mono-alphabetical Substitution Cipher

- The key space: all permutations of $\Sigma=\{A, B, C, \ldots, Z\}$
- Encryption given a key π :
each letter X in the plaintext P is replaced with $\Pi(X)$
- Decryption given a key π :
each letter Y in the ciphertext P is replaced with $\Pi^{-1}(Y)$

Example:

A BCDEFGHI JKLMNOPQRSTUVWXYZ
$\pi=B$ A D C Z HW Y G O Q X S VTRNMSK J I P FEU

BECAUSE \rightarrow AZDBJSZ

General Substitution Cipher: Cryptanalysis

- Exhaustive search is infeasible
for the letter A, there are 26 probabilities
for the letter B, there are 25 probabilities
for the letter C , there are 24 probabilities
... and so on
- Key space size is $26!\approx 4 * 10^{26}$

Frequency Features of English

Reative Leterer Frequency

- Vowels, which constitute 40% of plaintext, are often separated by consonants.
- Letter A is often found in the beginning of a word or second from last.
- Letter I is often third from the end of a word.
- Letter Q is followed only by U
- Some words are more frequent, such as the, and, at, is, on, in

Cryptanalysis of Substitution Ciphers:

 Frequency Analysis- Basic ideas:
- Each language has certain features: frequency of letters, or of groups of two or more letters.
- Substitution ciphers preserve the language features.

Substitution ciphers are vulnerable to frequency analysis attacks.

- History of frequency analysis:

Earliest known description of frequency analysis is in a book by the ninth-century scientist al-Kindi
Rediscovered or introduced from the Arabs in the Europe during the Renaissance

Cryptanalysis using Frequency Analysis

- The number of different ciphertext characters or combinations are counted to determine the frequency of usage.
- The cipher text is examined for patterns, repeated series, and common combinations.
- Replace ciphertext characters with possible plaintext equivalents using known language characteristics.
- Frequency analysis made substitution cipher insecure

Improve the Security of Substitution Cipher

- Using nulls
e.g., using numbers from I to 99 as the ciphertext alphabet, some numbers representing nothing are inserted randomly
- Deliberately misspell words
e.g.,"Thys haz thi ifekkt off diztaughting thi ballans off frikwenseas"
- Homophonic substitution cipher
each letter is replaced by a variety of substitutes
- These make frequency analysis more difficult, but not impossible

Summary

- Shift ciphers are easy to break using brute force attacks, they have small key space.
- Substitution ciphers preserve language features and are vulnerable to frequency analysis attacks.

Polyalphabetic Substitution Ciphers

- Main weaknesses of monoalphabetic substitution ciphers
each letter in the ciphertext corresponds to only one letter in the plaintext letter
- Idea for a stronger cipher (1460's by Alberti)
- use more than one cipher alphabet, and switch between them when encrypting different letters
Developed into a practical cipher by Vigenère (published in 1586)

The Vigenère Cipher

- Definition:

Given m, a positive integer, $P=C=\left(Z_{26}\right)^{n}$, and $K=\left(k_{1}, k_{2}, \ldots, k_{m}\right)$ a key, we define:

- Encryption:
$E_{k}\left(P_{1}, P_{2} \ldots p_{m}\right)=\left(p_{1}+k_{1}, p_{2}+k_{2} \ldots p_{m}+k_{m}\right)(\bmod 26)$
- Decryption:
$D_{k}\left(c_{1}, c_{2} \ldots c_{m}\right)=\left(c_{1}-k_{1}, c_{2}-k_{2} \ldots c_{m}-k_{m}\right)(\bmod 26)$

Example:

Security of Vigenère Cipher

- Vigenere masks the frequency with which a character appears in a language:
One letter in the ciphertext corresponds to multiple letters in the plaintext.
Makes the use of frequency analysis more difficult.
- Any message encrypted by a Vigenere cipher is a collection of as many shift ciphers as there are letters in the key.

Vigenere Cipher: Cryptanalysis

- Find the length of the key.
- Divide the message into that many shift cipher encryptions.
- Use frequency analysis to solve the resulting shift ciphers.
- Vigenère cipher is vulnerable: once the key length is found, a cryptanalyst can apply frequency analysis.
- How to Find the Key Length?
- For Vigenere, as the length of the keyword increases, the letter frequency shows less English-like characteristics and becomes more random.
- Two methods to find the key length:

Kasisky test
Index of coincidence (Friedman)

Kasisky Test

- Two identical segments of plaintext will be encrypted to the same ciphertext, if the they occur in the text at the distance $\Delta,(\Delta \equiv 0(\bmod m), m$ is the key length $)$.
- Algorithm:
- Search for pairs of identical segments of length at least 3

Record distances between the two segments: $\Delta I, \Delta 2, \ldots$ m divides $\operatorname{gcd}(\Delta 1, \Delta 2, \ldots)$

PT THESUNANDTHEMANINTHEMOON
Key $\quad K I N G K I N G K I N G K I N G K I N G K I N G$
CT D PRYEVNTNBUKWIAOXBUKWWBT

Rotor Machines-I

- Basic idea: if the key in Vigenere cipher is very long, then the attacks won't work
- Implementation idea: multiple rounds of substitution
- A machine consists of multiple cylinders
each cylinder has 26 states, at each state it is a substitution cipher: the wiring between the contacts implements a fixed substitution of letters
each cylinder rotates to change states according to different schedule changing the substitution

Rotor Machines-2

- A m-cylinder rotor machine has 26^{m} different substitution ciphers

$$
\begin{aligned}
\circ & 26^{3}
\end{aligned}=17576
$$

Enigma Machine

- Patented by Scherius in 1918
- Came on the market in 1923, weighted 50 kg (about 110 lbs), later cut down to 12 kg (about 26 lbs)
- It cost about \$30,000 in today's prices
- $34 \times 28 \times 15 \mathrm{~cm}$
- Widely used by the Germans from 1926 to the end of second world war
- First successfully broken by Polish in the thirties by exploiting the repeating of the message key and knowledge of the machine design)
- During the WW II, Enigma was broken by Alan Turing (19121954) in the UK intelligence. He was an english mathematician, logician and cryptographer, father of modern computer science.

Enigma

Key Mapping

- Use 3 scramblers (rotors): 17576 substitutions
- 3 scramblers can be used in any order: 6 combinations
- Plug board: allowed 6 pairs of letters to be swapped before the scramblers process started and after it ended.
- Total number of keys $\approx 10^{16}$
- Later versions use 5 rotors and 10 pairs of letters

Encrypting with Enigma

How to Break the Enigma Machine?

- Recover 3 secrets adversary may get access to the machine
- Daily key: The settings for the rotors and plug boards changed daily according to a codebook received by all operators
- A day key has the form

Plugboard setting:A/L-P/R-T/D-B/W-K/F-O/Y
Scrambler arrangement: 2-3-I
Scrambler starting position: Q-C-W

- Message key: Each message was encrypted with a unique key defined by the position of the 3 rotors
- A reflector enables to map a character twice with each rotor
- First rotor rotates after each key press
- Second rotor rotates after first had a complete revolution,
- and so on

- Internal connections for the 3 rotors
- Daily keys
- Message keys
- With 2 months of day keys and Enigma usage instructions, the Polish mathematician Rejewski succeeded to reconstruct the internal wiring

Lessons Learned From Breaking Enigma

- Keeping a machine (i.e., a cipher algorithm) secret does not help
The Kerckhoff's principle
Security through obscurity doesn't work
- Large number of keys are not sufficient
- Known plaintext attack was easy to mount
- Key management was the weakest link
- People were also the weakest link
- Even a strong cipher, when used incorrectly, can be broken

Kerckhoffs's Principle

- Auguste Kerckhoff (I835-1903) was a Dutch linguist and cryptographer who was professor of languages at the School of Higher Commercial Studies in Paris in the late 19th century.
- The security of a protocol should rely only on the secrecy of the keys, protocol designs should be made public. (I883)
- secrecy of a protocol does not work

