Basic Ciphers
Ahmet Burak Can
Hacettepe University
abc@hacettepe.edu.tr

Books
- Textbook:
- Supplementary books:

Outline of the Course
- Basic ciphers
- Block ciphers, Encryption modes and Stream ciphers
- Hash functions, message digests, HMAC
- Number Theory, Public Key Cryptography, RSA
- Digital certificates and signatures, X509
- Authentication: Two-Three factor authentication, Biometrics, Smart Cards
- Security Handshake
- Real-time Communication Security, SSL/TLS, IPSEC
- Kerberos

Outline of the Course
- Threshold cryptography
- Operating System Security
- Malicious Software: Trojans, logic bombs, viruses, worms, botnets, rootkits, trapdoors and cover channels
- Firewalls, VPNs, Intrusion detection systems
- If time permits:
 - Program Security
 - HTTP and Web Application Security, XSS
 - Wireless Security: WEP and WPA

Which Security Concept?

Information Security
- Computer Security:
 - Ensure security of data kept on the computer
- Network Security:
 - Ensure security of communication over insecure medium
- Approaches to Secure Communication
 - Steganography
 - hides the existence of a message
 - Cryptography
 - hide the meaning of a message
Basic Security Goals

- Privacy (secrecy, confidentiality)
 - only the intended recipient can see the communication
- Authenticity (integrity)
 - the communication is generated by the alleged sender
- Authorization
 - limit the resources that a user can access
- Availability
 - make the services available 99.999...% of time
- Non-repudiation
 - no party can refuse the validity of its actions
- Auditing
 - Take a log of everything done in the system

Basic Terminology in Cryptography – 1

- Cryptography: the study of mathematical techniques related to aspects of providing information security services.
- Cryptanalysis: the study of mathematical techniques for attempting to defeat information security services.
- Cryptology: the study of cryptography and cryptanalysis.

Basic Terminology in Cryptography – 2

- Encryption (encipherment): the process of transforming information (plaintext) using an algorithm (cipher) to make it unreadable to anyone except those possessing special knowledge
- Decryption (decipherment): the process of making the encrypted information readable again
- Key: the special knowledge shared between communicating parties
- Plaintext: the data to be concealed.
- Ciphertext: the result of encryption on the plaintext

Encryption & Decryption

![Encryption and Decryption Diagram](image)

Breaking Ciphers

- There are different methods of breaking a cipher, depending on:
 - the type of information available to the attacker
 - the interaction with the cipher machine
 - the computational power available to the attacker

Breaking Ciphers – Attack Types

- Ciphertext-only attack: The cryptanalyst knows only the ciphertext. Sometimes the language of the plaintext is also known.
 - The goal is to find the plaintext and the key.
 - Any encryption scheme vulnerable to this type of attack is considered to be completely insecure.
- Known-plaintext attack: The cryptanalyst knows one or several pairs of ciphertext and the corresponding plaintext.
 - The goal is to find the key used to encrypt these messages or a way to decrypt any new messages that use that key.
Breaking Ciphers - Attack Types

- **Chosen-plaintext attack**: The cryptanalyst can choose a number of messages and obtain the ciphertexts for them.
 - The goal is to deduce the key used in the other encrypted messages or decrypt any new messages using that key.
- **Chosen-ciphertext attack**: Similar to the chosen-plaintext attack, but the cryptanalyst can choose a number of ciphertexts and obtain the plaintexts.

Today's Ciphers

- Shift Cipher
- Mono-alphabetical Substitution Cipher
- Polyalphabetical Substitution Ciphers
- Rotor Machine
- Enigma

Shift Cipher

- A substitution cipher
- **The Key Space:**
 - [1 .. 25]
- **Encryption given a key K:**
 - each letter in the plaintext P is replaced with the K'th letter following corresponding number (shift right)
- **Decryption given key K:**
 - shift left
- **History:**
 - K = 3, Caesar's cipher

Shift Cipher: An Example

- **Ciphertext attack**
- **Decryption given a key ̟:**
 - key space is small (≤ 26 possible keys)
 - P = CRYPTOGRAPHY IS FUN
 - K = 11
 - C = NCJAVZRCLAS JTDQFY

 \[
 \begin{align*}
 C &\rightarrow 2 & 2+11 \mod 26 = 13 &\rightarrow N \\
 R &\rightarrow 17 & 17+11 \mod 26 = 2 &\rightarrow C \\
 \ldots \\
 N &\rightarrow 13 & 13+11 \mod 26 = 24 &\rightarrow Y \\
 \end{align*}
 \]

Shift Cipher: Cryptanalysis

- Can an attacker find K?
 - YES: exhaustive search,
 - key space is small (≤ 26 possible keys)
 - the attacker can search all the key space in very short time
- Once K is found, very easy to decrypt

General Mono-alphabetical Substitution Cipher

- The key space: all permutations of Σ = {A, B, C, ..., Z}
- **Encryption given a key π:**
 - each letter X in the plaintext P is replaced with π(X)
- **Decryption given a key π:**
 - each letter Y in the ciphertext P is replaced with π⁻¹(Y)

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
π = B A D C Z H W Y G Q X S V T R N M S K J I P F E U

BECAUSE → AZDJSZ
General Substitution Cipher: Cryptanalysis

- Exhaustive search is infeasible
 - for the letter A, there are 26 probabilities
 - for the letter B, there are 25 probabilities
 - for the letter C, there are 24 probabilities
 - ... and so on
- Key space size is $26! \approx 4 \times 10^{26}$

Cryptanalysis of Substitution Ciphers: Frequency Analysis

- Basic ideas:
 - Each language has certain features: frequency of letters, or of groups of two or more letters.
 - Substitution ciphers preserve the language features.
 - Substitution ciphers are vulnerable to frequency analysis attacks.
- History of frequency analysis:
 - Earliest known description of frequency analysis is in a book by the ninth-century scientist al-Kindi
 - Rediscovered or introduced from the Arabs in the Europe during the Renaissance

Frequency Features of English

- Vowels, which constitute 40% of plaintext, are often separated by consonants.
- Letter A is often found in the beginning of a word or second from last.
- Letter I is often third from the end of a word.
- Letter Q is followed only by U.
- Some words are more frequent, such as the, and, at, is, on, in

Cryptanalysis using Frequency Analysis

- The number of different ciphertext characters or combinations are counted to determine the frequency of usage.
- The cipher text is examined for patterns, repeated series, and common combinations.
- Replace ciphertext characters with possible plaintext equivalents using known language characteristics.
- Frequency analysis made substitution cipher insecure

Improve the Security of Substitution Cipher

- Using nulls
 - e.g., using numbers from 1 to 99 as the ciphertext alphabet, some numbers representing nothing are inserted randomly
- Deliberately misspell words
 - e.g., "Thy hox thi ifekett off ditsaugthng thi ballans off frikwenseas"
- Homophonic substitution cipher
 - each letter is replaced by a variety of substitutes
- These make frequency analysis more difficult, but not impossible

Summary

- Shift ciphers are easy to break using brute force attacks, they have small key space.
- Substitution ciphers preserve language features and are vulnerable to frequency analysis attacks.
Polyalphabetic Substitution Ciphers

- Main weaknesses of monoalphabetic substitution ciphers
 - each letter in the ciphertext corresponds to only one letter in the plaintext letter
- Idea for a stronger cipher (1460’s by Alberti)
 - use more than one cipher alphabet, and switch between them when encrypting different letters
 - Developed into a practical cipher by Vigenère (published in 1586)

The Vigenère Cipher

- **Definition:**
 - Given m, a positive integer, \(P = \mathbb{Z}_m^* \), and \(K = (k_1, k_2, \ldots, k_n) \)
 - a key, we define:
- **Encryption:**
 - \(E_k(p_1, p_2, \ldots, p_n) = (p_1+k_1, p_2+k_2, \ldots, p_n+k_n) \pmod{26} \)
- **Decryption:**
 - \(D_k(c_1, c_2, \ldots, c_n) = (c_1-k_1, c_2-k_2, \ldots, c_n-k_n) \pmod{26} \)

Example:
- Plaintext: CRYPTOGRAPHY
- Key: LUCKLUCKLUCK
- Ciphertext: NLAZEIBLJII

Security of Vigenère Cipher

- Vigenère masks the frequency with which a character appears in a language:
 - One letter in the ciphertext corresponds to multiple letters in the plaintext.
 - Makes the use of frequency analysis more difficult.
- Any message encrypted by a Vigenère cipher is a collection of as many shift ciphers as there are letters in the key.

Vigenère Cipher: Cryptanalysis

- **Find the length of the key.**
 - Divide the message into that many shift cipher encryptions.
 - Use frequency analysis to solve the resulting shift ciphers.
- Vigenère cipher is vulnerable: once the key length is found, a cryptanalyst can apply frequency analysis.
- **How to Find the Key Length?**
 - For Vigenère, as the length of the keyword increases, the letter frequency shows less English-like characteristics and becomes more random.
 - Two methods to find the key length:
 - Kasiski test
 - Index of coincidence (Friedman)

Kasiski Test

- Two identical segments of plaintext will be encrypted to the same ciphertext, if they occur in the text at the distance \(\Delta \), \(\Delta \equiv 0 \pmod{m} \), \(m \) is the key length.
- Algorithm:
 - Search for pairs of identical segments of length at least 3
 - Record distances between the two segments: \(\Delta_1, \Delta_2, \ldots \)
 - \(m \) divides \(\gcd(\Delta_1, \Delta_2, \ldots) \)

PT: THE SUN AND THE MAN IN THE MOON
Key: KI NG K I NG
CT: D P R Y E V N T N B U K W I A O X B U K W W B T

Rotor Machines-I

- Basic idea: if the key in Vigenere cipher is very long, then the attacks won’t work
- Implementation idea: multiple rounds of substitution
- A machine consists of multiple cylinders
 - each cylinder has 26 states, at each state it is a substitution cipher: the wiring between the contacts implements a fixed substitution of letters
 - each cylinder rotates to change states according to different schedule changing the substitution
Rotor Machines-2

- A m-cylinder rotor machine has 26th different substitution ciphers
 - $26^1 = 17576$
 - $26^2 = 456,976$
 - $26^3 = 11,881,376$

Enigma Machine

- Patented by Scherius in 1918
 - Came on the market in 1923, weighted 50 kg (about 110 lbs), later cut down to 12 kg (about 26 lbs)
 - It cost about $30,000 in today’s prices
 - $34 \times 28 \times 15$ cm
- Widely used by the Germans from 1926 to the end of second world war
 - First successfully broken by Polish in the thirties by exploiting the repeating of the message key and knowledge of the machine design
 - During the WWII, Enigma was broken by Alan Turing (1912 - 1954) in the UK intelligence. He was an English mathematician, logician and cryptographer, father of modern computer science.

Enigma

- Use 3 scramblers (rotors): 17576 substitutions
- 3 scramblers can be used in any order: 6 combinations
- Plug board: allowed 6 pairs of letters to be swapped before the scramblers process started and after it ended.
- Total number of keys $\approx 10^{16}$
- Later versions use 5 rotors and 10 pairs of letters

Key Mapping

- A reflector enables to map a character twice with each rotor
- First rotor rotates after each key press
- Second rotor rotates after first had a complete revolution,
- and so on

Encrypting with Enigma

- Machine was designed under the assumption that the adversary may get access to the machine
- Daily keys: The settings for the rotors and plug boards changed daily according to a codebook received by all operators
 - A day key has the form
 - Scrambler arrangement: 2-3-1
 - Scrambler starting position: Q–C–W
- Message keys: Each message was encrypted with a unique key defined by the position of the 3 rotors

How to Break the Enigma Machine?

- Recover 3 secrets
 - Internal connections for the 3 rotors
 - Daily keys
 - Message keys
- With 2 months of day keys and Enigma usage instructions, the Polish mathematician Rejewski succeeded to reconstruct the internal wiring
Lessons Learned From Breaking Enigma

- Keeping a machine (i.e., a cipher algorithm) secret does not help
 - The Kerckhoff’s principle
 - Security through obscurity doesn’t work
- Large number of keys are not sufficient
- Known plaintext attack was easy to mount
- Key management was the weakest link
- People were also the weakest link
- Even a strong cipher, when used incorrectly, can be broken

Kerckhoffs’s Principle

- Auguste Kerckhoff (1835 – 1903) was a Dutch linguist and cryptographer who was professor of languages at the School of Higher Commercial Studies in Paris in the late 19th century.

- The security of a protocol should rely only on the secrecy of the keys, protocol designs should be made public. (1883)
 - Secrecy of a protocol does not work