One Time Pad, Block Ciphers, Encryption Modes

Ahmet Burak Can
Hacettepe University
abc@hacettepe.edu.tr

Basic Ciphers

- **Shift Cipher**
 - Brute-force attack can easily break
- **Substitution Cipher**
 - Frequency analysis can reduce the search space
- **Vigenere Cipher**
 - Kasiski test can reveal the length of key
- **Enigma Machine**
 - The capture of the daily codebook

- How perfect secrecy can be satisfied?

One Time Pad

- **Basic Idea**: Extend Vigenère cipher so that the key is as long as the plaintext
 - Key is a random string and is used only once
 - Encryption is similar to Vigenère
 - Cannot be broken by frequency analysis or Kasiski test

Plaintext \(P = (x_1 \ x_2 \ \ldots \ x_n) \)
Key \(K = (k_1 \ k_2 \ \ldots \ k_n) \)
Ciphertext \(C = (y_1 \ y_2 \ \ldots \ y_n) \)

\[E_k(X) = (x_1+k_1 \ x_2+k_2 \ \ldots \ x_n+k_n) \mod m \]
\[D_k(Y) = (y_1-k_1 \ y_2-k_2 \ \ldots \ y_n-k_n) \mod m \]

The Binary Version of One-Time Pad

- **Plaintext space = Ciphertext space = Keyspace = \{0,1\}^n**
- **Key is chosen randomly**
- **For example:**
 - Plaintext 11011011
 - Key 01101001
 - Ciphertext 10110010

The Binary Version of One-Time Pad

- **Plaintext space = Ciphertext space = Keyspace = \{0,1\}^n**
- **Key is chosen randomly**
- **For example:**
 - Plaintext 11011011
 - Key 01101001
 - Ciphertext 10110010
Security of One Time Pad

- How good is the security of one time pad?
 - The key is random, so ciphertext is completely random
 - Any plaintext can correspond to a ciphertext with the same length
- A scheme has perfect secrecy if ciphertext provides no "information" about plaintext
 - C. E. Shannon, 1949
- One-time pad has perfect secrecy
 - For example, suppose that the ciphertext is "Hello", can we say any plaintext is more likely than another plaintext?

Importance of Key Randomness

- For perfect secrecy, key-length ≥ msg-length
- What if a One-Time Pad key is not chosen randomly, instead, texts from, e.g., a book is used.
 - this is not One-Time Pad anymore
 - this does not have perfect secrecy and can be broken
- The key in One-Time Pad should never be reused.
 - If it is reused, it is insecure!
 - How to send the key to the receiver of the ciphertext?
- These requirements make One Time Pad impractical.

Block Ciphers

- Block Cipher = Symmetric key encryption = Conventional Encryption
- Block ciphers can be considered as substitution ciphers with large block size (≥ 64 bits)
- Map n-bit plaintext blocks to n-bit ciphertext blocks (n: block size).
 - For n-bit plaintext and ciphertext blocks and a fixed key, the encryption function is a one-to-one function

Block Ciphers

- Block size: in general larger block sizes mean greater security.
- Key size: larger key size means greater security (larger key space).
- Number of rounds: multiple rounds offer increasing security.
- Encryption modes: define how messages larger than the block size are encrypted, very important for the security of the encrypted message.
A Simple Block Cipher: Hill Cipher

- The key \(k \) is a matrix. The message is considered as vectors. Encryption and decryption operations are matrix multiplication operations.
 - Encryption: \(C = k \cdot P \mod 26 \)
 - Decryption: \(P = k^{-1} \cdot C \mod 26 \)

- Example:
 - The plaintext is `CAT` converted to numeric values (2, 0, 19).
 - If the key is
 \[
 \begin{pmatrix}
 6 & 24 & 1 \\
 13 & 16 & 10 \\
 20 & 17 & 15
 \end{pmatrix}
 \]
 - Encryption: \[
 \begin{pmatrix}
 6 & 24 & 1 \\
 13 & 16 & 10 \\
 20 & 17 & 15
 \end{pmatrix}
 \begin{pmatrix}
 2 \\
 0 \\
 19
 \end{pmatrix}
 \equiv
 \begin{pmatrix}
 31 \\
 216 \\
 325
 \end{pmatrix}
 \equiv
 \begin{pmatrix}
 5 \\
 8 \\
 13
 \end{pmatrix}
 \mod 26
 \]
 - \(C = \text{FIN} \)

An Insecure Block Cipher

- Hill cipher is insecure since it uses linear matrix operations.
 - Each output bit is a linear combination of the input bits
 - An insecure block cipher uses linear equations

- Hill Cipher can easily be broken by known-plaintext attack
 - An attacker knowing a plaintext and ciphertext pair can easily figure out the key matrix.

Feistel Network

- A Feistel Network is fully specified given
 - the block size: \(n = 2w \)
 - number of rounds: \(d \)
 - \(d \) round functions \(f_1, f_2, \ldots, f_d : \{0,1\}^w \rightarrow \{0,1\}^w \)
 - Each \(f \) function is a SP cipher

- Feistel Network are used in DES, IDEA, RC5, and many other block ciphers.
- Not used in AES
History of Data Encryption Standard (DES)

- 1967: Feistel at IBM
 - Lucifer: block size 128; key size 128 bit
- 1972: NBS asks for an encryption standard
- 1975: IBM developed DES (modification of Lucifer)
 - block size 64 bits; key size 56 bits
- 1975: NSA suggests modification
- 1977: NBS adopts DES as encryption standard in (FIPS 46-1, 46-2).
- 2001: NIST adopts Rijndael (AES) as replacement to DES.

DES Features

- Features:
 - Block size = 64 bits
 - Key size = 56 bits
 - Number of rounds = 16
 - 16 intermediary keys, each 48 bits

DES Structure

Details of DES Rounds

- An initial permutation is applied on the plaintext
 \(IP(x) = L_0 R_0 \)
- In each round:
 \(L_i = R_{i-1} \)
 \(R_i = L_{i-1} \oplus f(R_{i-1}, K_i) \)
Details of DES Rounds

- After the last round
 \[y = IP^{-1}(R_{16}L_{14}) \]

![Diagram of DES Round](image)

DES f Function

![Diagram of DES f Function](image)

DES S-boxes

- S-boxes are the only non-linear elements in DES design

 \[B(6 \text{ bits}) \xrightarrow{\text{S-Box}} C(4 \text{ bits}) \]

- \(B = b_5b_4b_3b_2b_1b_0 \rightarrow \text{row}=b_5b_4 \text{ column}=b_3b_2b_1b_0 \)

- Example:
 - \(B = 011011 \) \text{ row}=01 \text{ column}=1101

 ![S-box Table](image)

- Outer 4 bits
 \[
 \begin{array}{cccccccccccc}
 00 & 0010 & 1100 & 0001 & 0011 & 0100 & 0110 & 1000 & 1010 & 1100 & 1110 & 1111 \\
 01 & 1110 & 1011 & 0100 & 1100 & 0111 & 0011 & 0001 & 0110 & 1010 & 1101 & 1110 \\
 10 & 0110 & 1001 & 0101 & 1110 & 1011 & 0111 & 1001 & 0011 & 1011 & 1101 & 1111 \\
 11 & 1110 & 1010 & 1001 & 1111 & 1010 & 0111 & 1001 & 0011 & 1011 & 1101 & 1111 \\
 \end{array}
 \]

- Middle 4 bits of input
 \[
 \begin{array}{cccccccccccc}
 00 & 0010 & 1100 & 0001 & 0011 & 0100 & 0110 & 1000 & 1010 & 1100 & 1110 & 1111 \\
 01 & 1110 & 1011 & 0100 & 1100 & 0111 & 0011 & 0001 & 0110 & 1010 & 1101 & 1110 \\
 10 & 0110 & 1001 & 0101 & 1110 & 1011 & 0111 & 1001 & 0011 & 1011 & 1101 & 1111 \\
 11 & 1110 & 1010 & 1001 & 1111 & 1010 & 0111 & 1001 & 0011 & 1011 & 1101 & 1111 \\
 \end{array}
 \]

- Outer 4 bits
 \[
 \begin{array}{cccccccccccc}
 00 & 0010 & 1100 & 0001 & 0011 & 0100 & 0110 & 1000 & 1010 & 1100 & 1110 & 1111 \\
 01 & 1110 & 1011 & 0100 & 1100 & 0111 & 0011 & 0001 & 0110 & 1010 & 1101 & 1110 \\
 10 & 0110 & 1001 & 0101 & 1110 & 1011 & 0111 & 1001 & 0011 & 1011 & 1101 & 1111 \\
 11 & 1110 & 1010 & 1001 & 1111 & 1010 & 0111 & 1001 & 0011 & 1011 & 1101 & 1111 \\
 \end{array}
 \]

- C = 1001

DES Weak Keys

- **Weak keys**: keys make the same sub-key to be generated in more than one round.
 - Result: reduce cipher complexity
 - Weak keys can be avoided at key generation. DES has 4 weak keys:
 - 0000000 0000000
 - 0000000 FFFFFFFFFFFF
 - FFFFFFFFFFF 0000000
 - FFFFFFFFFFF FFFFFFFFFFF

- **Semi-weak keys**: A pair of DES semi-weak keys is a pair \((K_1,K_2)\) with \(E_{K_1}(E_{K_2}(x))=x\)
 - There are six pairs of DES semi-weak keys
Dictionary Attack to DES

- Even without having weak/semi-weak keys DES is vulnerable to dictionary attacks:
- Each plaintext may result in 2^{64} different ciphertexts, but there are only 2^{56} possible different key values.
- Given a PT/CT pair (M, C)
 - Encrypt the known plaintext M with all possible keys.
 - Keep a look up table of size 2^{56}.
 - Look up C in the table

Double DES

- DES uses a 56-bit key, this raised concerns about brute force attacks.
- One proposed solution: Double DES.
- Apply DES twice using two keys, K_1 and K_2.
 - $C = E_{K_2}[E_{K_1}[P]]$
 - $P = D_{K_1}[D_{K_2}[C]]$
- This leads to a $2 \times 56 = 112$ bit key, so it is more secure than DES. Is it?

Meet-in-the-middle Attack

- Goal: given the pair (P, C) find keys K_1 and K_2.
- Based on the observation:
 $$C = E_{K_2}[E_{K_1}[P]]$$
 $$D_{K_2}[C] = E_{K_1}[P]$$
- Encrypt P with all 2^{56} possible keys K_1
 - Store all pairs $(K_1, E_{K_1}[P])$, sorted by $E_{K_1}[P]$.
- Decrypt C using all 2^{56} possible keys K_2
 - For each decrypted result, check to see if there is a match $D_{K_2}(C) = E_{K_1}(P)$. If a match is found, (K_1, K_2) is a possible match
- The attack has a higher chance of succeeding if another pair (P', C') is available to the cryptanalysis.

Triple DES

- Two key version is widely used and standard
 - Key space is $56 \times 2 = 112$ bits
 - Encrypt: $C = E_{K_2}[D_{K_1}[E_{K_1}[P]]]$
 - Decrypt: $P = D_{K_1}[E_{K_2}[D_{K_1}[C]]]$
- Three key version is possible but not standard
 - Key space is $56 \times 3 = 168$ bits
 - Encrypt: $C = E_{K_2}[D_{K_1}[E_{K_1}[P]]]$
 - Decrypt: $P = D_{K_1}[E_{K_2}[D_{K_1}[C]]]$
- No known practical attack against it.
- Some protocols/applications use 3DES (such as PGP)
Encryption Modes

- Electronic Code Book (ECB)
- Cipher Block Chaining (CBC)
- Output Feedback Mode (OFB)
- Cipher Feedback Mode (CFB)
- Counter Mode (CTR)

Electronic Code Book (ECB)

- Message is broken into independent blocks of block_size bits.
 - Encryption: $C_i = E_k(P_i)$
 - Decryption: $P_i = D_k(C_i)$

Properties of ECB

- Deterministic: the same data block gets encrypted the same way.
 - This reveals patterns of data when a data block repeats.
- Malleable: reordering ciphertext results in reordered plaintext.
- Errors in one ciphertext block do not propagate.
- Usage: not recommended to encrypt more than one block of data.

Cipher Block Chaining (CBC)

- Cipher Block Chaining (CBC): next input depends upon previous output
 - Encryption: $C_i = E_k(M_i \oplus C_{i-1})$, with $C_0=IV$
 - Decryption: $M_i = C_i \oplus D_k(C_{i-1})$, with $C_0=IV$
Properties of CBC

- **Randomized encryption**: repeated text gets mapped to different encrypted data.
 - can be proven to be “secure” assuming that the block cipher has desirable properties and that random IVs are used

- A ciphertext block depends on all preceding plaintext blocks
 - Sequential encryption, cannot use parallel hardware

- Errors in one block of ciphertext propagate to two blocks
 - one bit error in C_i affects all bits in M_i and one bit in M_{i+1}

Block Ciphers vs. Stream Ciphers

- A block cipher operates on blocks of fixed length.

- A **stream cipher** is a symmetric key cipher where plaintext bits are combined with a pseudorandom cipher bit stream (keystream), typically by an exclusive-or (xor) operation.

Output Feedback (OFB)

- Output feedback (OFB): construct a **pseudorandom number generator** (PRNG) to obtain a one-time pad and XOR the message with the pad
 - $y_0=IV$ $y_i = E_k[y_{i-1}]$

 ![OFB Diagram](image)

Properties of OFB

- Randomized encryption

- Sequential encryption, but preprocessing possible
 - Generate the key before the message comes

- Error propagation limited
 - Only the changed bits are lost

- It can only be used as a **stream cipher**
Cipher Feedback (CFB)

- Cipher Feedback (CFB): the message is XORed with the feedback of encrypting the previous block

Counter Mode (CTR)

- Counter Mode (CTR): Another way to construct pseudo random number generator using DES
 - $Y_i = E_k[\text{counter} + i]$
 - $C_i = Y_i \oplus P_i$
 - Sender and receiver share a counter value (does not need to be secret) and the secret key

Properties of CTR

- **Software and hardware efficiency**: different blocks can be encrypted in parallel.
- **Preprocessing**: the encryption part can be done offline and when the message is known, just do the XOR.
- **Random Access**: decryption of a block can be done in random order, very useful for hard-disk encryption.
- **Messages of Arbitrary Length**: ciphertext is the same length with the plaintext (i.e., no IV).