Hash Functions, Message Authentication Codes

Ahmet Burak Can
Hacettepe University
abc@hacettepe.edu.tr

Security Services
- Confidentiality: Symmetric encryption solves
- Integrity
- Authentication
- Non-repudiation
- Access control
- Availability

Integrity in Networking
- Sender computes a CRC for the message
- Sender appends the CRC code to the message and sends them to the receiver
- The receiver computes the CRC of the message.
 - If the CRC appended to the message is equal to the computed one, the message is unchanged with a high probability.
 - If the CRCs do not match, the message is changed during transmission.

CRC Checksum in Networking

Sender

Receiver

INTERNET

<table>
<thead>
<tr>
<th>M</th>
<th>CRC</th>
<th>Chk Sum</th>
</tr>
</thead>
</table>

INTERNET

<table>
<thead>
<tr>
<th>M</th>
<th>CRC</th>
<th>Chk Sum</th>
</tr>
</thead>
</table>

= ?
Cryptographic Hash Functions

- Maps an arbitrary length input to a fixed-size output.
 - If \(m \) is message, \(H \) is the hash function, \(H(m) \) is the output of hash function, also called message digest.
- Desirable features:
 - One-way: There should be no easy way to guess \(m \) from \(H(m) \)
 - Pseudorandom: If \(m \) and \(m' \) are two close values, \(H(m) \) and \(H(m') \) should not be close each other.
 - Collision resistant: It should be hard to find two inputs that hash to the same output
 - It should be hard to find two inputs \(a \) and \(b \) such that \(H(a) = H(b) \)

Example Operation of Hash Functions

Birthday Paradox

- Birthday Problem ("paradox"): When \(\sqrt{N} \) or more are chosen randomly from a domain of \(N \), there is a significant chance of collision.
- Probability of \(n \) persons having different birthdays:
 \[
p(n) = 1 \times (1 - \frac{1}{365}) \times (1 - \frac{2}{365}) \times \ldots \times (1 - \frac{n-1}{365})
\]
Collision Resistance

- If a hash function produces \(N \) bits of output, an attacker should not easily find a collision by performing less than (on average) \(2^{N/2} \) hash operations.
 - If there is an easier method than this brute force attack, it is typically considered a flaw in the hash function.
 - Therefore, hash output size \(\geq 128 \) bits is desirable.
- But why “collision resistance”?
 - A chosen plaintext attack: Trudy is Alice’s secretary. Generates two opposite messages.

Internals of a Hash Function

- A fixed-size “compression function”.
 - Each iteration mixes an input block with the previous output.
 - Design:
 - Lots of operations (rotations, \(\oplus \), \(\land \), \(\lor \), +,...) fast in s/w.
 - More of them are added if a weakness is found.

Some Popular Hash Algorithms

- MD5 (Rivest)
 - 128-bit output
 - Most popular
- SHA-1 (NIST-NSA)
 - US gov’t standard
 - 160-bit output
- RIPEMD-160
 - Euro. RIPE project.
 - 160-bit output

Message Authentication Codes (MAC)

- A simple message integrity checking method:
 - Compute \(H(m) \) and send \((m, H(m))\)
 - The receiver computes \(H(m) \) and compares with the received \(H(m) \) value.
- What happens if an attacker changes both \(m \) and \(H(m) \) value and sends \((m', H(m'))\) to receiver?
 - A secret key system can be used to generate a cryptographic checksum known as a message authentication code (MAC).
 - It is also referred as MIC (Message Integrity Code).
MACs

- Let $\text{MAC}_K(m)$ be a message authentication code for m produced by using K.
- An attacker shouldn’t be able to generate a valid $(m, \text{MAC}_K(m))$, even after seeing many valid message-MAC pairs.
- It aims to protect against undetected modifications on messages, not the contents.
 - Sender of a message m computes $\text{MAC}_K(m)$ and appends it to the message.
 - Verification: The receiver also computes $\text{MAC}_K(m)$ & compares to the received value.

MACs from Hash Functions

- prefix: $\text{MAC}_K(m) = H(K || m)$
 - not secure; extension attack.
- suffix: $\text{MAC}_K(m) = H(m || K)$
 - mostly ok; problematic if H is not collision resistant.
- send half of the digest
- envelope: $\text{MAC}_K(m) = H(K_1 || m || K_2)$
- HMAC: $\text{MAC}_K(m) = H(K_2 || H(K_1 || m))$
 - provably secure; popular in Internet standards.