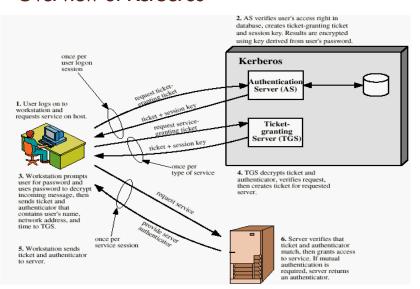


Ahmet Burak Can Hacettepe University

abc@hacettepe.edu.tr

Kerberos


- Kerberos is a network authentication protocol. Requirements:
 - Security
 - Reliability
 - Transparency
 - Scalability
- Cryptographic authentication for distributed systems
- Based on symmetric-key authentication with KDC
- Developed at MIT: two versions: Version 4 and Version 5 (specified as RFC1510)
 - http://web.mit.edu/kerberos/www

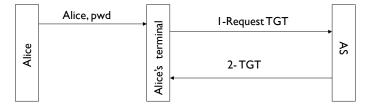
Kerberos

- Advantages:
 - secure authentication
 - single sign-on
 - secure data flow
- Applications benefiting from Kerberos:
 - telnet, ftp
 - BSD rtools (rlogin, rsh, rcp)
 - NFS
 - Others (pine, eudora, etc.)

Overview of Kerberos

3

Protocol Design Motivations


- AS knows passwords for all clients
- AS distributes keys Client-TGS
- TGS distributes keys Client-Server
- Lifetime validity for tickets, include a time validity
- Freshness of messages to prevent replay attacks: use sequence numbers, timestamp or random numbers

Kerberos Keys

- Each principal shares a "master key" with KDC
 - K_A:Alice's master key. Used for initial authentication
- K_{TGS}: The key known by AS and the TGS.
- K_{A, tes}:The key shared between the TGS and Alice
- Ticket Granting Tickets (TGT):
 - issued to Alice by AS after login
 - encrypted with K_{TGS}
 - \circ used to obtain session key $K_{A,tgs}$

Logging into the Network

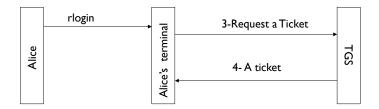
 $\text{I-Alice } \rightarrow \text{AS: } \text{ID}_{\text{A}} \parallel \text{ID}_{\text{tgs}} \parallel \text{TS}_{\text{I}}$

2- AS \rightarrow Alice: $E_{K_A} [K_{A,tgs}|| ID_{tgs} || TS_2 || Lifetime_2 || Ticket_{tgs}]$

 $\frac{\mathsf{Ticket}_{\mathsf{tgs}}}{\mathsf{Ticket}_{\mathsf{tgs}}} = \mathsf{E}_{\mathsf{K}_{\mathsf{tgs}}} [|\mathsf{K}_{\mathsf{A},\mathsf{tgs}}|| \ \mathsf{ID}_{\mathsf{A}} \ || \ \mathsf{AD}_{\mathsf{A}} \ || \ \mathsf{ID}_{\mathsf{tgs}} \ || \ \mathsf{TS}_2 \ || \ \mathsf{Lifetime}_2]$

 ID_{tgs} denotes the identifier of the Ticket Granting Server (TGS) $K_{A,\,tgs}$ is the key shared by the TGS and Alice

 K_{tes} key known by AS and the TGS


Logging into the Network

The workstation,

- converts Alice's password into a DES key
- when receives the credentials from the server, decrypts them using this DES key
- if decrypts correctly, authentication is successful
- discards Alice's master key; retains the TGT.
- TGT contains all the information TGS needs about Alice's session; hence TGS can work without remembering any volatile data.

7

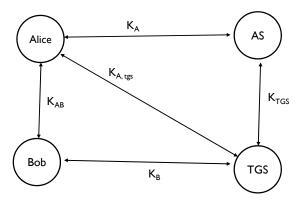
Obtaining a Ticket from TGS

 $\begin{array}{ll} \text{3-Alice} \rightarrow \text{TGS:} & \text{ID}_{\text{B}} \ || \text{Ticket}_{\text{tgs}} \, || \ \text{Authenticator}_{\text{A}} \\ \text{4-TGS} \rightarrow \text{Alice:} & \text{E}_{\text{KA,tgs}} \left[\ \text{K}_{\text{AB}} \, || \ \text{ID}_{\text{B}} \ || \ \text{TS}_{\text{4}} \, || \ \text{Ticket}_{\text{B}} \, \right] \\ \end{array}$

$$\begin{split} & \textbf{Authenticator}_{\textbf{A}} = \textbf{E}_{\textbf{K}_{\textbf{A}, \text{tgs}}} \textbf{ [} \textbf{ID}_{\textbf{A}} \textbf{ || } \textbf{AD}_{\textbf{A}} \textbf{ || } \textbf{TS}_{\textbf{3}} \textbf{]} \\ & \textbf{Ticket}_{\text{tgs}} = \textbf{E}_{\textbf{K}_{\text{tgs}}} \textbf{ [} \textbf{K}_{\textbf{A,tgs}} \textbf{ || } \textbf{ID}_{\textbf{A}} \textbf{ || } \textbf{AD}_{\textbf{A}} \textbf{ || } \textbf{ID}_{\text{tgs}} \textbf{ || } \textbf{TS}_{\textbf{2}} \textbf{ || } \textbf{Lifetime}_{\textbf{2}} \textbf{]} \\ & \textbf{Ticket}_{\textbf{B}} = \textbf{E}_{\textbf{K}_{\textbf{R}}} \textbf{ [} \textbf{K}_{\textbf{AB}} \textbf{ || } \textbf{ID}_{\textbf{A}} \textbf{ || } \textbf{AD}_{\textbf{A}} \textbf{ || } \textbf{ID}_{\textbf{B}} \textbf{ || } \textbf{TS}_{\textbf{4}} \textbf{ || } \textbf{Lifetime}_{\textbf{4}} \textbf{]} \end{split}$$

 K_B is the key shared by the TGS and server B

Client-Server Authentication Exchange



5- Alice \rightarrow Bob: Ticket_B || Authenticator_A

6- Bob \rightarrow Alice: $E_{K_{AB}}[TS_5 + I]$

 $\begin{aligned} & \mathsf{Ticket}_{\mathsf{B}} = \mathsf{E}_{\mathsf{K}_{\mathsf{B}}} \left[\; \mathsf{K}_{\mathsf{AB}} \right| \; | \mathsf{ID}_{\mathsf{A}} \; || \; \mathsf{AD}_{\mathsf{A}} \; || \; \mathsf{ID}_{\mathsf{B}} \; || \; \mathsf{TS}_{\mathsf{4}} \; || \; \mathsf{Lifetime}_{\mathsf{4}} \right] \\ & \mathsf{Authenticator}_{\mathsf{A}} = \mathsf{E}_{\mathsf{K}_{\mathsf{AB}}} \left[\; \mathsf{ID}_{\mathsf{A}} \; || \; \mathsf{AD}_{\mathsf{A}} \; || \; \mathsf{TS}_{\mathsf{5}} \right] \end{aligned}$

Key Relation in Kerberos

10