Number Theory, Public Key Cryptography, RSA

Ahmet Burak Can
Hacettepe University
abc@hacettepe.edu.tr

The Euler Phi Function

- Definition:

For a positive integer n , if $0<\mathrm{a}<\mathrm{n}$ and $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=\mathrm{l}, \mathrm{a}$ is relatively prime to n .

- Definition:

Given an integer $\mathrm{n}, \varphi(\mathrm{n})$ is the number of positive integers less than or equal to n and relatively prime to n.

Fermat's Little Theorem

- Fermat's Little Theorem

If p is a prime number and a is a natural number that is not a multiple of p, then

$$
\mathrm{a}^{\mathrm{p}-1} \equiv \mathrm{I}(\bmod \mathrm{p})
$$

Euler's Theorem

- Euler's Theorem

Given integer $n>I$, such that $\operatorname{gcd}(a, n)=I$ then

$$
a^{\varphi(n)} \equiv I(\bmod n)
$$

- Corollary

Given integer $n>I$ such that $\operatorname{gcd}(a, n)=I$, then $a^{\varphi(n)-I} \bmod n$ is a multiplicative inverse of a mod n.

Consequence of Euler's Theorem

- Principle of Modular Exponentiation

 Given integer $n>1, x, y$, and a positive integers with $\operatorname{gcd}(a, n)=1$. If $x \equiv y(\bmod \varphi(n))$, then$$
\mathrm{a}^{\mathrm{x}} \equiv \mathrm{a}^{y}(\bmod n)
$$

- Proof idea:

$$
a^{x}=a^{k \varphi(n)+y}=a^{y}\left(a^{\varphi(n)}\right)^{k}
$$

by applying Euler's theorem we obtain

$$
\mathrm{a}^{\mathrm{x}} \equiv \mathrm{a}^{\mathrm{y}}(\bmod \mathrm{n})
$$

Diffie-Hellman Key Exchange

- Diffie-Hellman proposed a cryptographic protocol to exchange keys among two parties in 1976.

Public parameters:

p: A large prime
g: Base (generator)
Secret parameters:
$\alpha, \beta \in\{0, \mathrm{I}, 2, \ldots, \mathrm{p}-2\}$

Commutative Encryption

- Definition:

An encryption scheme is commutative if $\mathrm{E}_{\mathrm{K} 1}\left[\mathrm{E}_{\mathrm{K} 2}[\mathrm{M}]\right]=\mathrm{E}_{\mathrm{K} 2}\left[\mathrm{E}_{\mathrm{K} 1}[\mathrm{M}]\right]$

Given a commutative encryption scheme, then $D_{k 1}\left[D_{K 2}\left[E_{K 1}\left[E_{k 2}[M]\right]=M\right.\right.$

- Most symmetric encryption scheme are not commutative such as DES and AES.

Security of Diffie-Hellman

- Discrete Logarithm Problem (DLP):

Given $p, g, g^{\alpha} \bmod p$, what is α ?
easy in Z, hard in Z_{p}

- Diffie-Hellman Problem (DHP):
- Given $p, g, g^{\alpha} \bmod p, g^{\beta} \bmod p$, what is $g^{\alpha \beta} \bmod p$?
- DHP is as hard as DLP.

Pohlig-Hellman Exponentiation Cipher

- A commutative exponentiation cipher
encryption key (e, p), where p is a prime
decryption key (d, p), where ed $\equiv \mathrm{I}(\bmod (p-I))$ or in other words $d \equiv e^{-1}(\bmod (p-l))$
to encrypt M, compute $C=M^{e} \bmod p$
to decrypt C, compute $M=C^{d} \bmod p=M^{\text {ed }} \bmod p$

Asymmetric Encryption Functions

- An asymmetric encryption function:

Encryption (K) and decryption (K^{-1}) keys are different.

- Knowledge of the encryption key is not sufficient for deriving the decryption key efficiently.
Hence, the encryption key can be made "public".

Public Key Encryption

- Each party has a PAIR (K, K^{-1}) of keys:
- K is the public key
- K^{-1} is the private key

$$
D_{K}^{-1}\left[E_{K}[M]\right]=M
$$

- The public-key K may be made publicly available.
- Many can encrypt with the public key, only one can decrypt.
- Knowing the public-key and the cipher, it is computationally infeasible to compute the private key.

Solutions with Public Key Cryptography

- Key distribution solution:

Alice makes her encryption key K public
Everyone can send her an encrypted message:

$$
\mathrm{C}=\mathrm{E}_{\mathrm{K}}(\mathrm{P})
$$

- Only Alice can decrypt it with the private key K^{-1} :

$$
P=D_{K}^{-1}(C)
$$

- Source Authentication Solution:
- Only Alice can "sign" a message, using K^{-1}.
- Anyone can verify the signature, using K.

Only if such a function could be found...

RSA Algorithm

- Invented in 1978 by Ron Rivest,Adi Shamir and Leonard Adleman
- Published as R L Rivest, A Shamir, LAdleman, "On Digital Signatures and Public Key Cryptosystems", Communications of the ACM, vol 21 no 2, ppl20-I26, Feb 1978
- Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence

RSA Public Key Crypto System

- Choose large primes p, q
- Compute $n=p q$ and $\varphi(n)=(q-I)(p-I)$
- Choose e, such that $\operatorname{gcd}(e, \varphi(n))=I$.
- Take e to be a prime
- Compute $d \equiv e^{-1} \bmod \varphi(n)$, such that ed $\equiv I \bmod \varphi(n)$
- Public key: n, e

Private key: d

- Encryption: $C=E(M)=M^{e} \bmod n$

Decryption: $D(C)=C^{d} \bmod n$

RSA Encryption

- Encryption: $C=E(M)=M^{e} \bmod n$,
- Decryption: $D(C)=C^{d} \bmod n$.
- Why does it work?
$D(C)=\left(M^{e}\right)^{d} \bmod n=M^{\text {ed }} \bmod n$
$=M^{k \varphi(n)+I} \bmod n$, for some k
$=\left(M^{\varphi(n)}\right)^{k} M \bmod n$
$=M$
- RSA problem: Given $n, e, M^{e} \bmod n$, what is M ?
- Computing d is equivalent to factoring n.
- The security is based on difficulty of factoring large integers.

RSA Example

- Let $p=I I, q=7$, then

。 $\mathrm{n}=77, \varphi(\mathrm{n})=60$

- Let e = 37, then
$\circ \mathrm{d}=13(\mathrm{ed}=48 \mathrm{I} ;$ ed $\bmod 60=\mathrm{I})$
- Let $M=15$, then $C \equiv M^{e} \bmod n$
$\mathrm{C} \equiv 15^{37}(\bmod 77)=71$
- $M \equiv C^{d} \bmod n$
$\mathrm{M} \equiv 7 \mathrm{I}^{13}(\bmod 77)=15$

RSA Implementation

- The security of RSA depends on how large n is, which is often measured in the number of bits for n.
Current recommendation is 1024 bits for n.
- p and q should have the same bit length, so for 1024 bits RSA, p and q should be about 512 bits.
- $p-q$ should not be small.
- In general, p, q randomly selected and then tested for primality
- Many implementations use the Rabin-Miller test, (probabilistic test)

