
Operating System SecurityOperating System Security

Ahmet Burak Can

Hacettepe University
abc@hacettepe.edu.tr

1

Computer System ComponentsComputer System Components

� Hardware

◦ Provides basic computing resources (CPU, memory, I/O devices).

� Operating system

◦ Controls and coordinates the use of the hardware among the
various application programs.

� Applications programs

◦ Define the ways in which the system resources are used to solve
the computing problems of the users.

� Users

◦ E.g., people, machines, other computers.

2

Abstract View of System ComponentsAbstract View of System Components

3

What Security Goals Does Operating What Security Goals Does Operating
System Provide?System Provide?

� Goal 1: enabling multiple users securely share a
computer

◦ Separation and sharing of processes, memory, files, devices, etc.

� How to achieve it? � How to achieve it?

◦ memory protection

◦ processor modes

◦ authentication

◦ file access control

4

What Security Goals Does Operating What Security Goals Does Operating
System Provide?System Provide?

� Goal 2: ensure secure operation in networked
environment

� How to achieve it?

◦ Authentication◦ Authentication

◦ Access Control

◦ Secure Communication (using cryptography)

◦ Logging & Auditing

◦ Intrusion Prevention and Detection

◦ Recovery

5

CPU (CPU (PProcessorrocessor)) Modes or Modes or PPrivilegerivilegess

� Generally, two basic CPU modes are available: System
mode, User mode

� System mode (privileged mode, master mode,
supervisor mode, kernel mode)

◦ can execute any instruction and access any memory locations,
e.g., accessing hardware devices, enabling and disabling interrupts, e.g., accessing hardware devices, enabling and disabling interrupts,
changing privileged processor state, accessing memory
management units, modifying registers for various descriptor
tables .

Reading: http://en.wikipedia.org/wiki/CPU_modes

6

CPU (CPU (PProcessorrocessor)) Modes or Modes or PPrivilegerivilegess

� User mode

◦ access to memory is limited, cannot execute some instructions

◦ cannot, e.g., disable interrupts, change arbitrary processor state,
access momory management units

� Transition from user mode to system mode must be
done through well defined call gates (system calls)

7

System CallsSystem Calls

� Guarded gates from user mode (space, land) into kernel
mode (space, land)
◦ use a special CPU instruction (often an interruption), transfers
control to predefined entry point in more privileged code;
allows the more privileged code to specify where it will be
entered as well as important processor state at the time of
entry.entry.

◦ the higher privileged code, by examining processor state set by
the less privileged code and/or its stack, determines what is
being requested and whether to allow it.

Reference: http://en.wikipedia.org/wiki/System_call

8

Kernel Kernel SSpace pace vsvs User User SSpacepace

� Part of the OS runs in the kernel model

◦ known as the OS kernel

� Other parts of the OS run in the user mode, including
service programs (daemon programs), user applications, service programs (daemon programs), user applications,
etc.

◦ they run as processes

◦ they form the user space (or the user land)

9

User AuthenticationUser Authentication

� Using a method to validate users who attempt to access
a computer system or resources, to ensure they are
authorized

� Examples� Examples

◦ User accounts with passwords

� something you known

◦ Smart cards or other security tokens

� something you have

◦ Biometrics

� something you are

10

Access ControlAccess Control

� Reference Monitor Concept
◦ Mediates all security-sensitive operations

� Process Creation, File Access, …

� Subjects

� Objects

� Access� Access

11

Access Control ListsAccess Control Lists

� Each file is associated a set rules defining the access
permissions of users on the file.

12

Basic Concepts of UNIX Access Control: Basic Concepts of UNIX Access Control:
Users, Groups, Files, ProcessesUsers, Groups, Files, Processes
� Each user has a unique UID

� Users belong to multiple groups

� Processes are subjects
◦ associated with uid/gid pairs, e.g., (euid, egid), (ruid, rgid), (suid,
sgid)sgid)

� Objects are files: each file has the following information
◦ owner

◦ group

◦ 12 permission bits
� read/write/execute for user, group, and others,

� suid, sgid

13

Basic Permissions Bits on Files (NonBasic Permissions Bits on Files (Non--
directories)directories)

� Read bit controls reading the content of a file

◦ i.e., the read system call

� Write bit controls changing the content of a file

◦ i.e., the write system call◦ i.e., the write system call

� Execute controls loading the file in memory and
execute

◦ i.e., the execv system call

14

The Three The Three Sets Sets oof Permission Bitsf Permission Bits

� UNIX classifies three sets of permission bits for files:
◦ user, group, other

� When a user wants to access a file:
◦ if the user is the owner of a file, then the r/w/x bits for owner
applyapply

◦ otherwise, if the user belongs to the group the file belongs to,
then the r/w/x bits for group apply

◦ otherwise, the r/w/x bits for others apply

15

UNIXUNIX Permission BitsPermission Bits for Filesfor Files

� Example:
$ ls –l

-rwxr-xr--+ 2 abc akd 4096 May 3 11:54 a.txt

◦ Permissions for a.txt:
� User has r/w/x permissions

� Group has r/x permissions

� Others has r permission

16

Execution of a Execution of a FFileile on UNIXon UNIX

� Binary file vs. script file

� Having execute but not read, can one run a file?

◦ Yes

� Having execute but not read, can one run a script file?

◦ No

� Having read but not execute, can one run a script file?

◦ No

17

UNIXUNIX Directories and Directories and ii--nodenode

18

UNIXUNIX Directory TraversalDirectory Traversal

19

UNIX UNIX Permission Bits on Directories Permission Bits on Directories -- 11

� Read bit allows one to show file names in a directory

$ ls –l

dr-------- 2 abc akd 4096 May 2 23:33 dir

$ ls dir

file1 file2

$ ls -l dir

total 0

?--------- ? ? ? ? ? file1

?--------- ? ? ? ? ? File2

$ ls -l dir/file1

ls: dir/file1: Permission denied

$ cd dir

-bash: cd: dir: Permission denied

20

UNIX UNIX Permission Bits on Directories Permission Bits on Directories -- 22

� The execution bit controls traversing a directory

◦ does a lookup, allows one to find inode number from file name

◦ chdir to a directory requires execution

◦ Accessing a file identified by a path name requires execution to
all directories along the path

21

UNIX UNIX Permission Bits on Directories Permission Bits on Directories -- 33

� Example: Usage of execution bit on a directory

$ ls -l

d--x------ 2 abc akd 4096 May 2 23:33 dir

$ ls dir

ls: dir: Permission denied

$ ls -l dir$ ls -l dir

ls: dir: Permission denied

$ ls dir/file1

dir/file1

$ ls -l dir/file1

-rw-r--r-- 1 abc akd 0 May 2 23:33 dir/file1

$ cd dir

$ ls

ls: .: Permission denied

22

UNIX UNIX Permission Bits on Directories Permission Bits on Directories -- 44

� Write + execution control creating/deleting files in the
directory

◦ Deleting/creating a file under a directory requires no permission
on the file.

◦ To update a file under a directory, write permission on the
directory is not required, only execution permission on the directory is not required, only execution permission on the
directory is enough.

23

UNIX UNIX Permission Bits on Directories Permission Bits on Directories -- 55

� Example: Usage of execution and write bits on a directory

$ ls -l

d--x------+ 2 abc akd 4096 May 2 23:33 dir

$ ls -l dir/file1

----------+ 1 abc akd 0 May 2 23:33 dir/file1

$ rm dir/file1

rm: cannot remove `dir/file1': Permission denied

$ chmod 300 dir

$ ls –l

d-wx------+ 2 abc akd 4096 May 2 23:33 dir

$ rm dir/file1

$ ls -l dir/file1

ls: dir/file1: No such file or directory

24

Some ExamplesSome Examples

� What permissions are needed to access a file/directory?
◦ read a file: /d1/d2/f3

◦ write a file: /d1/d2/f3

◦ delete a file: /d1/d2/f3

◦ rename a file: from /d1/d2/f3 to /d1/d2/f4

25

Process User ID Model in Modern UNIX Process User ID Model in Modern UNIX
SystemsSystems

� Each process has two user IDs

◦ real user ID (ruid): owner of the process

◦ effective user ID (euid): user ID which affects the most access
control decisions

and two group IDs� and two group IDs

◦ real group ID: original group of the process

◦ effective group ID: group ID which affects the most access
control decisions

26

The Need for suid/sgid BitsThe Need for suid/sgid Bits

� System integrity requires more than controlling who
can write, but also how it is written

� Some operations are not modeled as files and require
user id = 0user id = 0

◦ halting the system

◦ bind/listen on “privileged ports” (TCP/UDP ports below 1024)

◦ changing password

27

