Operating System Security

Ahmet Burak Can

Hacettepe University
abc@hacettepe.edu.tr

Computer System Components

e Hardware
° Provides basic computing resources (CPU, memory, /O devices).
e Operating system

> Controls and coordinates the use of the hardware among the
various application programs.

e Applications programs

> Define the ways in which the system resources are used to solve
the computing problems of the users.

o Users

> E.g., people, machines, other computers.

AbstractView of System Components

user user user L. user

compiler assembler text editor 500 database
system

system and application programs

operating system

computer hardware

What Security Goals Does Operating
System Provide?

e Goal I:enabling multiple users securely share a
computer

° Separation and sharing of processes, memory, files, devices, etc.

* How to achieve it?
° memory protection
© processor modes
° authentication

> file access control

What Security Goals Does Operating
System Provide?

» Goal 2: ensure secure operation in networked
environment

¢ How to achieve it?
> Authentication
> Access Control
> Secure Communication (using cryptography)
° Logging & Auditing
> Intrusion Prevention and Detection

> Recovery

CPU (Processor) Modes or Privileges

¢ Generally, two basic CPU modes are available: System
mode, User mode

¢ System mode (privileged mode, master mode,
supervisor mode, kernel mode)
° can execute any instruction and access any memory locations,
e.g., accessing hardware devices, enabling and disabling interrupts,
changing privileged processor state, accessing memory

management units, modifying registers for various descriptor
tables .

Reading: http://en.wikipedia.org/wiki/CPU_modes

CPU (Processor) Modes or Privileges

e User mode
° access to memory is limited, cannot execute some instructions

> cannot, e.g., disable interrupts, change arbitrary processor state,
access momory management units

¢ Transition from user mode to system mode must be
done through well defined call gates (system calls)

System Calls

¢ Guarded gates from user mode (space, land) into kernel
mode (space, land)

o use a special CPU instruction (often an interruption), transfers
control to predefined entry point in more privileged code;
allows the more privileged code to specify where it will be
entered as well as important processor state at the time of
entry.

° the higher privileged code, by examining processor state set by
the less privileged code and/or its stack, determines what is
being requested and whether to allow it.

Reference: http://en.wikipedia.org/wiki/System_call

Kernel Space vs User Space

» Part of the OS runs in the kernel model
> known as the OS kernel

e Other parts of the OS run in the user mode, including
service programs (daemon programs), user applications,
etc.
> they run as processes

o they form the user space (or the user land)

User Authentication

e Using a method to validate users who attempt to access
a computer system or resources, to ensure they are
authorized

e Examples
> User accounts with passwords
something you known
> Smart cards or other security tokens
something you have
> Biometrics

something you are

Access Control

» Reference Monitor Concept

o Mediates all security-sensitive operations
Process Creation, File Access, ...

» Subjects
¢ Objects
e Access

Access Control Lists

e Each file is associated a set rules defining the access
permissions of users on the file.

Owner

Process
User
space

o

Basic Concepts of UNIX Access Control:
Users, Groups, Files, Processes

e Each user has a unique UID
e Users belong to multiple groups

* Processes are subjects

> associated with uid/gid pairs, e.g., (euid, egid), (ruid, rgid), (suid,
sgid)

* Objects are files: each file has the following information

> owner
° group
° 12 permission bits

read/write/execute for user, group, and others,
suid, sgid

Basic Permissions Bits on Files (Non-
directories)

* Read bit controls reading the content of a file
° i.e. the read system call

* Write bit controls changing the content of a file
> i.e., the write system call

 Execute controls loading the file in memory and
execute

> i.e., the execv system call

The Three Sets of Permission Bits

e UNIX classifies three sets of permission bits for files:
> user, group, other

* When a user wants to access a file:

° if the user is the owner of a file, then the r/w/x bits for owner
apply

> otherwise, if the user belongs to the group the file belongs to,
then the r/w/x bits for group apply

o otherwise, the r/w/x bits for others apply

UNIX Permission Bits for Files

e Example:
$ 1s -1
-rwxr-xr--+ 2 abc akd 4096 May 3 11:54 a.txt

° Permissions for a.txt:
User has r/w/x permissions
Group has r/x permissions
Others has r permission

Execution of a File on UNIX

Binary file vs. script file

Having execute but not read, can one run a file?
> Yes

Having execute but not read, can one run a script file?
> No

Having read but not execute, can one run a script file?
> No

UNIX Directories and i-node

14 Bayt 2 Bayt i-node #

Tir ve Oznitelik
Bag sayisi
Sahibinin kullanici kodu
Sahibinin grup kodu

Kuttik boyu
Katik adi i-node # Yaratiima tarihi

Son erisim tarihi

Son guinlenme tarihi

10 adet dogrudan
disk 6bek numarasi

Unix Kilavuz Kiitiik Yapisi Tek dolayli
Cift dolayh
Uglti dolayh i=node Yapisi

UNIX Directory Traversal

/bbm igin /bbm /bbn/proje igin /bbm/proje
Kok Kilavuz i-node Alt Kilavuzu i-node Alt Kilavuzu
1 3 @ 3 25 @ 25
1 1 3
iz 9
bbm 3
cle |15 58
B G eof
bio 8
Jeo A
mak |10

UNIX Permission Bits on Directories - |

* Read bit allows one to show file names in a directory

$ 1s -1
dr-------- 2 abc akd 4096 May 2 23:33 dir
$ 1s dir

filel file2

$ 1s -1 dir

total 0

Pmmmm o 22272 ? filel
o 22272 ? File2

$ 1s -1 dir/filel
ls: dir/filel: Permission denied

$ cd dir
-bash: cd: dir: Permission denied

UNIX Permission Bits on Directories - 2

* The execution bit controls traversing a directory
° does a lookup, allows one to find inode number from file name
> chdir to a directory requires execution

> Accessing a file identified by a path name requires execution to
all directories along the path

UNIX Permission Bits on Directories - 3

e Example: Usage of execution bit on a directory

$ 1s -1
d--x------ 2 abc akd 4096 May 2 23:33 dir
$ 1s dir

ls: dir: Permission denied

$ 1s -1 dir
ls: dir: Permission denied

$ 1s dir/filel
dir/filel

$ 1s -1 dir/filel
-rw-r--r-- 1 abc akd 0 May 2 23:33 dir/filel

$ cd dir
$ 1s
ls: .: Permission denied

UNIX Permission Bits on Directories - 4

* Write + execution control creating/deleting files in the
directory
Deleting/creating a file under a directory requires no permission
on the file.

> To update a file under a directory, write permission on the
directory is not required, only execution permission on the
directory is enough.

UNIX Permission Bits on Directories - 5
e Example: Usage of execution and write bits on a directory

d--x--==-= + 2 abc akd 4096 May 2 23:33 dir

$ 1s -1 dir/filel
—————————— + 1 abc akd 0 May 2 23:33 dir/filel

$ rm dir/filel
rm: cannot remove ‘dir/filel': Permission denied

$ chmod 300 dir
$ 1s -1
d-wx-——--—- + 2 abc akd 4096 May 2 23:33 dir

$ rm dir/filel
$ 1s -1 dir/filel
ls: dir/filel: No such file or directory

Some Examples

¢ What permissions are needed to access a file/directory?

> read a file: /d1/d2/f3
> write a file: /d1/d2/f3
> delete a file: /d1/d2/f3
> rename a file: from /d1/d2/f3 to /d1/d2/f4

Process User ID Model in Modern UNIX
Systems

¢ Each process has two user IDs
o real user ID (ruid): owner of the process

> effective user ID (euid): user ID which affects the most access
control decisions

¢ and two group IDs
o real group ID: original group of the process

o effective group ID: group ID which affects the most access
control decisions

The Need for suid/sgid Bits

e System integrity requires more than controlling who
can write, but also how it is written

* Some operations are not modeled as files and require
user id =0
> halting the system
> bind/listen on “privileged ports” (TCP/UDP ports below 1024)

° changing password

