Real-Time Communication Security: SSL, IPSEC

Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr

The Internet

A packet-switched network:

- Data to be transmitted is divided into "packets"
- Each packet is forwarded by "routers" towards the destination

TCP/IP Reference Model

Application Layer (HTTP, FTP, SMTP, etc.)				
Transport Layer (TCP, UDP)				
Network Layer (IP)				
Data Link Layer (PPP, Ethernet, etc.)				
Physical Layer				

- IP: delivery of packets to the destination
- TCP: reliability of the communication
 - ordering the packets
 - error detection & recovery
 - congestion control
- UDP: basic transport protocol

Securing TCP/IP Communications

Layer 3:

- can secure all IP communication transparent to applications
- must be built into the OS

Layer 4:

doesn't require OS modification; deployment easy

Different Security Models in TCP/IP

(a) Network Level

	S/MIME	PGP	SET		
Kerberos	SMTP		НТТР		
UDP	ТСР				
IP					

(c) Application Level

Real-Time Protocol Security Issues

- Interactive session security (unlike e-mail)
- Layer 4 (SSL)
 - Implemented on top of layer 4, between TCP & application
 - Doesn't require any modifications to OS (deployment made easy!)
- Layer 3 (IPsec)
 - Implemented between IP & TCP
 - Each IP packet authenticated separately
 - Built in the OS
 - Can secure all IP communication
 - Host-to-host application is common.
 Process-to-process also possible

Perfect Forward Secrecy

- PFS: Compromise of long-term secrets doesn't compromise session keys
- Example: Diffie-Hellman with RSA authentication
- Non-PFS examples:
 - Kerberos
 - $^{\circ}\,$ Session key transport with RSA encryption
- By-product: Escrow foilage
 Conversations can't be decrypted by authorities holding copies of long-term private keys

A non-PFS Protocol Example

A PFS Protocol Example: Diffie-Hellman with RSA signature

SSL/TLS

- SSLv2
 - Released in 1995 with Netscape 1.1
 - Key generation algorithm kept secret
 - Reverse engineered & broken by Wagner & Goldberg
- SSLv3
 - Fixed and improved, released in 1996
 - Public design process
- PCT: Microsoft's version of SSL
- TLS: IETF's version

10

SSL Architecture

	/				
SSL Handshake Protocol	SSL Change Cipher Spec. Protocol	SSL Alert Protocol	HTTP, etc.		
SSL Record Protocol					
ТСР					
IP					

- Record Protocol: Message encryption/authentication
- Handshake Protocol: Identity authentication & key exchange
- Alert Protocol: Error notification (cryptographic or otherwise)
- Change Cipher P.: Activate the pending crypto suite

Handshake Protocol

- Negotiate Cipher-Suite Algorithms
 - Symmetric cipher to use
 - Key exchange method
 - Message digest function
- Establish the shared master secret
- Optionally authenticate server and/or client

Basic SSL/TLS Handshake Protocol

Key Computation

- "pre-master key": S
- "master key": $K = f(S, R_A, R_B)$
- For each connection, 6 keys are generated from K and the nonces. (3 keys for each direction: encryption, authentication/integrity, IV)

13

SSL Session Establishment

- association between a client and a server;
- created by the Handshake Protocol;

Session and Connection

- defines secure cryptographic parameters that can be shared by multiple connections.
- Connection:

Session:

- end-to-end reliable secure communication:
- every connection is associated with a session.

- Client authentication: Bob can optionally send "certificate request" in message 2.
- Session vs. Connection: "Sessions" are relatively long-lived. Multiple "connections" (TCP) can be supported under the same SSL session. (designed for HTTP 1.0)
- To start a connection, Alice can send an existing session ID.
- If Bob doesn't remember the session ID Alice sent, he responds with a different value.

- Crypto suite: A complete package specifying the crypto to be used. (encryption algorithm, key length, integrity algorithm, etc.)
 - ~30 predefined standard cipher suites.
 - Confidentiality: Achieved by encryption using DES, 3DES, RC2, RC4, IDEA.
 - Integrity: Achieved by computing a MAC and send it with the message; MD5, SHA1.
 - Key exchange: relies on public key encryption.
- Selection:
 - v2:Alice proposes a set of suites; Bob returns a subset of them;
 Alice selects one. (which doesn't make much sense)
 - v3:Alice proposes a set of suites; Bob selects one.

SSL Record Protocol

 Provides confidentiality and message integrity using shared keys established by the Handshake Protocol

17

IPsec

- Cryptographic protection of the IP traffic, transparent to the user
- Main components:
 - Internet Key Exchange (IKE): IPsec key exchange protocol
 - Authentication Header (AH): Authentication of the IP packet
 - Encapsulating Security Payload (ESP): Encryption/authentication of the IP packet

Uses of IPsec

- Can be used to provide user-, host-, or network-level protection (the granularity)
- Protocol modes:
 - Transport mode: Host applies IPsec to transport layer packet
 - Tunnel mode: Gateway applies IPsec to the IP packet of a host from the network (IP in IP tunnel)
- Typical uses:
 - Remote access to network (host-to-gateway)
 - Virtual private networks (gateway-to-gateway)

- Security Policy Database
 - Specifies what kind of protection should be applied to packets (according to source-destination address, port numbers, UserID, data sensitivity level, etc.)
- Security Association (SA)
 - An IPsec-protected connection (one-way)
 - Specifies the encryption/auth. algorithm, key, etc.
 - Identified by
 - security parameter index (SPI)
 - · destination IP address
 - protocol identifier (AH or ESP)
 - SAs are stored in SA databases
 - · AH information (auth. algorithm, key, key lifetime, etc.)
 - ESP information (auth./encryption algorithm, key, key lifetime, etc.)
 - · Lifetime of the SA

IPsec Packet Processing

Outbound packets:

- The proper SA is chosen from the security policy database
- From the SA database, the SPI and SA parameters are retrieved
- The IPsec protection is performed; packet passed to IP

Inbound packets:

- By the SPI, the SA is found
- IPsec auth./decryption is performed
- Packet passed to upper layer protocol

21

History of IKE

- Early contenders:
 - Photuris: Authenticated DH with cookies & identity hiding
 - SKIP: Authenticated DH with long-term exponents
- ISAKMP:
 - A protocol specifying only payload formats & exchanges (i.e., an empty protocol)
 - $^{\circ}\,$ Adopted by the IPsec working group
- Oakley: Modified Photuris; can work with ISAKMP
- IKE: A particular Oakley-ISAKMP combination

Authentication Header (AH)

0	1	2	3			
0 1 2 3 4 5 6 7	8 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3	4 5 6 7 8 9 0 1			
+-+-+-+-+-+-	+-+-+-+-+-+-+	-+-+-+-+-+-	+-+-+-+-+-+-+			
Next Header	Payload Len	RESER	VED			
+-						
Security Parameters Index (SPI)						
+-						
Sequence Number Field						
+-						
1			1			
+	Authentication	Data (variable)	1			
1			1			

- Auth. alg.: HMAC (with MD5, SHA1, etc.) CBC-MAC (3DES, RC5, AES, etc.)
- Typically, IV is included in the payload
- Authentication covers immutable fields of IP header as well as the payload.

AH with IPv4

Encapsulating Security Payload (ESP)

- Encryption: usually a block cipher in CBC mode
- IV is typically included in the payload (not encrypted)

ESP with IPv4