Security Handshake Pitfalls

Ahmet Burak Can

Hacettepe University
abc@hacettepe.edu.tr

Cryptographic Authentication

» Password authentication is subject to
eavesdropping

 Alternative: Cryptographic challenge-response
o Symmetric key
° Public key

Symmetric Key Challenge-Response

An example protocol:

I’'m Alice

a challenge R

qog

Alice

F(KagR)

Authentication not mutual (login only)

Subject to connection hijacking (login only)

Subject to off-line password guessing (if K is derived
from password)

Bob’s database has keys in the clear

Symmetric Key Challenge-Response

An alternative protocol:

I'm Alice
) KAB{R} w
2 g
< R

* Requires reversible cryptography

* Subject to dictionary attack, without eavesdropping, if R
is recognizable

* Can be used for mutual authentication if R is
recognizable and has limited lifetime

Symmetric Key Challenge-Response

A one-message protocol:

qog

I'm Alice, K jg{timestamp}

Alice

 Easy integration into password-sending systems
* More efficient: Single message, stateless
e Care needed against replays: timeout needed
» Care needed if key is common across servers
e Clock has to be protected as well

¢ Alternatively, with a hash function, send,
I’'m Alice, timestamp, H(K 5z, timestamp)

Public Key Challenge-Response

By signature:

Alice

I'm Alice

R

qog

[RIa

Public Key Challenge-Response

By decryption:

] I'm Alice]
o {R}a w
S o
< R <

* Problem:Bob (or Trudy) can get Alice to sign/decrypt any

text he chooses.

¢ Solutions:
> Never use the same key for different purposes (e.g., for login and

signature)
o Use formatted challenges

Mutual Authentication
An example protocol:

I'm Alice

R

F(KagR))

qog

R,

Alice

F(KAB' RZ)

Mutual Authentication with Few Messages

Number of messages for mutual authentication can be

reduced:
I'm Alice, R,
(0] RI’ F(KAB’RZ) oo}
= &
<
F(KAB'RI)

However, this protocol is vulnerable to

° Reflection attack
> Dictionary attack :Trudy can do dictionary attack against K,

acting as Alice, without eavesdropping.

Reflection Attack:

Orriginal session:

qo9g

I’'m Alice, R,

=~ Ri F(KagR2) w
2 &
}—

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, PR)
Decoy session:

I’'m Alice, R,

>

E)

= Rs, F(KagR))

Results from Reflection Attack

¢ Solutions:
o Different keys for Alice and Bob
> Formatted challenges, different for Alice and Bob

¢ Principle:
° Initiator should be the first to prove its identity

A Modified Mutual Authentication Scheme

¢ Solution against both

problems:

I'm Alice

R,

qog

F(KagR)) Ry

Alice

F(KagR2)

impersonate Bob.

¢ Dictionary attack is still possible if Trudy can

Mutual Authentication with Public Keys

I'm Alice, {R,}g
@ Ry {Ri}a w
2 s
< R,

* Problem: How can the public/private keys be

remembered by ordinary users?
o Possibly, they can be retrieved from a server with password

based authentication & encryption.

Session Key Establishment
¢ A session key is needed for integrity protection and
encryption in a communication session. [t must be
> different for each session

° unguessable by an eavesdropper
not K,g{x} for some x predictable/extractable by an attacker

¢ Session keys can be established by using

> Symmetric encryption
° Public key encryption

Session Key Establishment with Symmetric

Encryption
I'm Alice
R
£ g
Kas {R}
* Do not use K g{R} or K,g{R+1}
o Take (Kagt!){R} as the session key.
I'm Alice
[] R+ o]
2 :
< Kag {R*1}

Session Key Establishment with Public Key

Cryptosystem
* An alternative is to use Diffie-Helman key exchange

algorithm.
¢ Another alternative with PKC, send additional random

nonces {R}, , {R}; and use them to derive a session

key.
Rk
(0] ve)
(o)
% {Ro}a <
K=R ®R, K=R ®R,

Key Establishment and Authentication
with Key Distribution Center (KDC)

A simple protocol:

Key Establishment and Authentication

with KDC

* Another simple protocol:

_ Alice, Bob
Alice, Bob
Kg{Alice, Kng} Ka{Bob, K,g}, ticketg KDC
3 Ka{Bob, K} KDC © 8 where tickety= Kg{Alice, K} g
<
Alice, tickety
* Problem: * Problems:
o Potential delayed key delivery to Bob. (besides others) > No freshness guarantee for K,;
> Alice & Bob need to authenticate
Nonces Needham-Schroeder Protocol
* Nonce: Something created for one particular occasion
» Nonce types: [] N, Alice, Bob]
> Random numbers KA{N, Bob, K, ticketg} KDC
> Timestamps where tickety= Kg{K,g,Alice}
° Sequence numbers
. = ticketg, Kop{N @
» Random nonces needed for unpredictability % ckety KppfNa} S
. Obtamlr.1g ran.dom nonces from timestamps: KagfNy-1, N3}
encryption with a secret key.
KAB{N3'I}

Needham-Schroeder Protocol

Ticket is double-encrypted. (unnecessary)

N,: for authenticating KDC & freshness of K,g.

°

N,, N;: for key confirmation, mutual authentication

Why are the challenges N,, N; encrypted?

Problem: Bob doesn’t have freshness guarantee for K,

(i.e., can’t detect replays).

Replaying Tickets

* Messages should be integrity protected. Otherwise, cut-
and-paste reflection attacks possible:

replay ticketg, K g{N,}
e Kag{N,-1, N} 3
E o
[
___________________________________ KNl]
ticketg, Kag{N3}

3 g
|§ Kag{Ns-1, N} o

Expanded Needham-Schroeder Protocol

] hello

Ka{Ng}

N,,Alice, Bob, Kg{Npg}

Ka{N,, Bob, K, ticketg} KDC
where ticketg= Kg{K,g,Alice, Ng}

qog

Alice

tickety, Kag{N,}

Kag{N,- I, N}

KAB{N3'I}

Protocol Performance Comparison

* Computational Complexity:
(to minimize CPU time, power consumption)
o Number of private-key operations
° “ “ public-key “
d “ “ bytes encrypted with secret key
° “ “ bytes hashed

¢ Communication Complexity:
> Number of message rounds
> Bandwidth consumption

