Security Handshake Pitfalls

Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr

Cryptographic Authentication

- Password authentication is subject to eavesdropping
- Alternative: Cryptographic challenge-response
 Symmetric key
 - Public key

Symmetric Key Challenge-Response

An example protocol:

- Authentication not mutual (login only)
- Subject to connection hijacking (login only)
- Subject to off-line password guessing (if K is derived from password)
- Bob's database has keys in the clear

Symmetric Key Challenge-Response

An alternative protocol:

- Requires reversible cryptography
- Subject to dictionary attack, without eavesdropping, if R is recognizable
- Can be used for mutual authentication if R is recognizable and has limited lifetime

Public Key Challenge-Response

Public Key Challenge-Response

By decryption:

- Problem: Bob (or Trudy) can get Alice to sign/decrypt any text he chooses.
- Solutions:
 - Never use the same key for different purposes (e.g., for login and signature)
 - Use formatted challenges

Mutual Authentication

An example protocol:

Mutual Authentication with Few Messages

Number of messages for mutual authentication can be reduced:

However, this protocol is vulnerable to

- Reflection attack
- Dictionary attack :Trudy can do dictionary attack against K_{AB} acting as Alice, without eavesdropping.

Original session:

Decoy session:

Results from Reflection Attack

- Solutions:
 - Different keys for Alice and Bob
 - Formatted challenges, different for Alice and Bob
- Principle:
 - Initiator should be the first to prove its identity

A Modified Mutual Authentication Scheme

• Solution against both problems:

• Dictionary attack is still possible if Trudy can impersonate Bob.

Nonces

• Nonce: Something created for one particular occasion

19

- Nonce types:
- Random numbers
- Timestamps
- Sequence numbers
- Random nonces needed for unpredictability
- Obtaining random nonces from timestamps: encryption with a secret key.

Needham-Schroeder Protocol

Needham-Schroeder Protocol

- Ticket is double-encrypted. (unnecessary)
- N₁: for authenticating KDC & freshness of K_{AB}.
- N₂, N₃: for key confirmation, mutual authentication
- Why are the challenges N₂, N₃ encrypted?
- Problem: Bob doesn't have freshness guarantee for K_{AB} (i.e., can't detect replays).

Replaying Tickets

• Messages should be integrity protected. Otherwise, cutand-paste reflection attacks possible:

Protocol Performance Comparison

- Number of private-key operations
 - " " public-key " " bytes encrypte
 - " " bytes encrypted with secret key
 - " " bytes hashed
- Communication Complexity:
- Number of message rounds
- Bandwidth consumption