Lecture 2:
- Nearest-Neighbour Classifier
Your 1st Classifier: Nearest Neighbor Classifier
Concept Learning

- **Definition:** Acquire an operational definition of a general category of objects given *positive* and *negative* training examples.

- Also called *binary classification, binary supervised learning*
Concept Learning Example

- **Instance Space** X: Set of all possible objects describable by attributes (often called *features*).

- **Concept** c: Subset of objects from X (c is unknown).

- **Target Function** f: Characteristic function indicating membership in c based on attributes (i.e. *label*) (f is unknown).

- **Training Data** S: Set of instances labeled with target function.

<table>
<thead>
<tr>
<th>correct (complete, partial, guessing)</th>
<th>color (yes, no)</th>
<th>original (yes, no)</th>
<th>presentation (clear, unclear, cryptic)</th>
<th>binder (yes, no)</th>
<th>A+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 complete</td>
<td>yes</td>
<td>yes</td>
<td>clear</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>2 complete</td>
<td>no</td>
<td>yes</td>
<td>clear</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>3 partial</td>
<td>yes</td>
<td>no</td>
<td>unclear</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4 complete</td>
<td>yes</td>
<td>yes</td>
<td>clear</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

- slide by Thorsten Joachims
Concept Learning as Learning A Binary Function

• **Task**
 – Learn (to imitate) a function $f : X \rightarrow \{+1,-1\}$

• **Training Examples**
 – Learning algorithm is given the correct value of the function for particular inputs \rightarrow training examples
 – An example is a pair (x, y), where x is the input and $y = f(x)$ is the output of the target function applied to x.

• **Goal**
 – Find a function $h : X \rightarrow \{+1,-1\}$ that approximates $f : X \rightarrow \{+1,-1\}$ as well as possible.
Supervised Learning

• **Task**
 – Learn (to imitate) a function $f : X \rightarrow Y$

• **Training Examples**
 – Learning algorithm is given the correct value of the function for particular inputs → training examples
 – An example is a pair $(x, f(x))$, where x is the input and $y = f(x)$ is the output of the target function applied to x.

• **Goal**
 – Find a function $h : X \rightarrow Y$
 that approximates $f : X \rightarrow Y$
 as well as possible.
Supervised / Inductive Learning

• Given
 • examples of a function \((x, f(x))\)

• Predict function \(f(x)\) for new examples \(x\)
 • Discrete \(f(x)\): Classification
 • Continuous \(f(x)\): Regression
 • \(f(x) = \text{Probability}(x)\): Probability estimation
Appropriate Applications for Supervised Learning

- Situations where there is no human expert
 \(x \): Bond graph for a new molecule.
 \(f(x) \): Predicted binding strength to AIDS protease molecule.

- Situations where humans can perform the task but can't describe how they do it.
 \(x \): Bitmap picture of hand-written character
 \(f(x) \): Ascii code of the character

- Situations where the desired function is changing frequently
 \(x \): Description of stock prices and trades for last 10 days.
 \(f(x) \): Recommended stock transactions

- Situations where each user needs a customized function \(f \)
 \(x \): Incoming email message.
 \(f(x) \): Importance score for presenting to user (or deleting without presenting).
Image Classification: a core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

→

cat
The problem: semantic gap

Images are represented as 3D arrays of numbers, with integers between $[0, 255]$.

E.g.
$300 \times 100 \times 3$

(3 for 3 color channels RGB)
Challenges: Viewpoint Variation
Challenges: Illumination
Challenges: Deformation
Challenges: Occlusion
Challenges: Background clutter
Challenges: Intraclass variation
An image classifier

```python
def predict(image):
    # ????
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.
Attempts have been made
Data-driven approach:
1. Collect a dataset of images and labels
2. Use Machine Learning to train an image classifier
3. Evaluate the classifier on a withheld set of test images

```
def train(train_images, train_labels):
    # build a model for images -> labels...
    return model

def predict(model, test_images):
    # predict test_labels using the model...
    return test_labels
```
First classifier: **Nearest Neighbor Classifier**

```python
def train(train_images, train_labels):
    # build a model for images -> labels...
    return model

def predict(model, test_images):
    # predict test_labels using the model...
    return test_labels
```

Remember all training images and their labels

Predict the label of the most similar training image
Example dataset: CIFAR-10

10 labels
50,000 training images, each image is tiny: 32x32
10,000 test images.
Example dataset: **CIFAR-10**

- **10** labels
- **50,000** training images
- **10,000** test images.

For every test image (first column), examples of nearest neighbors in rows.
How do we compare the images? What is the distance metric?

L1 distance:

\[d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p| \]

<table>
<thead>
<tr>
<th>test image</th>
<th>training image</th>
<th>pixel-wise absolute value differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 32 10 18</td>
<td>10 20 24 17</td>
<td>46 12 14 1</td>
</tr>
<tr>
<td>90 23 128 133</td>
<td>8 10 89 100</td>
<td>82 13 39 33</td>
</tr>
<tr>
<td>24 26 178 200</td>
<td>12 16 178 170</td>
<td>12 10 0 30</td>
</tr>
<tr>
<td>2 0 255 220</td>
<td>4 32 233 112</td>
<td>2 32 22 108</td>
</tr>
</tbody>
</table>
import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

 def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N ""
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

 def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for ""
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i, :]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

 return Ypred

Nearest Neighbor classifier
import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

 def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N ""
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

 def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for ""
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
 return Ypred

Nearest Neighbor classifier
remember the training data
import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

 def train(self, X, y):
 """ X is N x D where each row is an example. Y is l-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

 def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros((num_test, dtye = self.ytr.dtype)

 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i’th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

 return Ypred

Nearest Neighbor classifier

for every test image:
 - find nearest train image with L1 distance
 - predict the label of nearest training image
Q: how does the classification speed depend on the size of the training data?

import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

 def train(self, X, y):
 """ X is N x D where each row is an example. Y is l-dimensional of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

 def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros((num_test, dtype = self.ytr.dtype))

 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

 return Ypred
Q: how does the classification speed depend on the size of the training data? linearly :(}

Nearest Neighbor classifier

```python
import numpy as np

class NearestNeighbor:
    def __init__(self):
        pass

    def train(self, X, y):
        """ X is N x D where each row is an example. Y is 1-dimension of size N ""
        self.Xtr = X
        self.ytr = y

    def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for ""
        num_test = X.shape[0]
        # lets make sure that the output type matches the input type
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

        # loop over all test rows
        for i in xrange(num_test):
            # find the nearest training image to the i'th test image
            # using the L1 distance (sum of absolute value differences)
            distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
            min_index = np.argmin(distances) # get the index with smallest distance
            Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

        return Ypred
```
Aside: Approximate Nearest Neighbor
find approximate nearest neighbors quickly

ANN: A Library for Approximate Nearest Neighbor Searching
David M. Mount and Sunil Arya
Version 1.1.2
Release Date: Jan 27, 2010

What is ANN?
ANN is a library written in C++, which supports data structures and algorithms for both exact and approximate nearest neighbor searching in extremely high dimensions.

In the nearest neighbor problem a set of data points in d-dimensional space is given. These points are preprocessed into a data structure, so that given any query point, the nearest or generally k-nearest points of it in q can be reported efficiently. The distance between two points can be defined in many ways. ANN assumes that distances are measured using any class of distance functions called Minkowski metrics. These include the well-known Euclidean distance, Manhattan distance, and max distance.

Based on our own experience, ANN performs quite efficiently for point sets ranging in size from thousands to hundreds of thousands, and in dimensions as high as 20. (For applications in significantly higher dimensions, the results are rather spotty, but you might try it anyway.)

The library implements a number of different data structures, based on kd-trees and box-decomposition trees, and employs a couple of different search strategies.

The library also comes with test programs for measuring the quality of performance of ANN on any particular data sets, as well as programs for visualizing the structure of the geometric data structures.

FLANN - Fast Library for Approximate Nearest Neighbors

What is FLANN?
FLANN is a library for performing fast approximate nearest neighbor searches in high-dimensional spaces. It includes a number of algorithms, the fastest is the branch and bound method for nearest neighbor search and a system for automatically choosing the best algorithm and optimum parameters depending on the dataset.

FLANN is written in C++ and contains bindings for the following languages: C, MATLAB and Python.

News
- 14 December 2013: Version 1.3.0 is out bringing incremental addition/removal of points to OpenANN
- 16 December 2013: Version 1.3.0 is out bringing two new index types and several other improvements
- You can find binary installations for FLANN on the OpenCV library download page. Thanks to the PCL developers!
- Max OS X users can install FLANN through MacPorts (make sure to block Malloc for optimizing the FLANN runtime)
- New metrics: dilated minkowski and its squared form
- New index structures for improving speed: AutoTree, KDTree, and a new and improved ANN
- New distance functions: new C++ template functions, several new indices, several new metrics
- The FLANN license was changed from LGPL to BSD.

How fast is it?
It can be expected that the time to find a FLANN to be of the same order of magnitude faster than a naïve brute-force (in query time), but precomputation is approximately nearest neighbor search.

Publications
More information and experimental results can be found in the following papers:
The choice of distance is a hyperparameter common choices:

L1 (Manhattan) distance

\[d_1(I_1, I_2) = \sum_P |I_1^p - I_2^p| \]

L2 (Euclidean) distance

\[d_2(I_1, I_2) = \sqrt{\sum_P (I_1^p - I_2^p)^2} \]
k-Nearest Neighbor

find the k nearest images, have them vote on the label

K-Nearest Neighbor (kNN)

- Given: Training data \((x_1,y_1),\ldots, (x_n,y_n)\)
 - Attribute vectors: \(x_i \in X\)
 - Labels: \(y_i \in Y\)

- Parameter:
 - Similarity function: \(K : X \times X \to R\)
 - Number of nearest neighbors to consider: \(k\)

- Prediction rule
 - New example \(x'\)
 - K-nearest neighbors: \(k\) train examples with largest \(K(x_i,x')\)

\[
h(x') = \arg \max_{y \in Y} \left\{ \sum_{i \in \text{knn}(x')} 1[y_i = y] \right\}
\]
1-Nearest Neighbor
4-Nearest Neighbors
4-Nearest Neighbors Sign
Example dataset: CIFAR-10
10 labels
50,000 training images
10,000 test images.

For every test image (first column), examples of nearest neighbors in rows...
What is the best **distance** to use?
What is the best value of **k** to use?

i.e. how do we set the **hyperparameters**?

We will talk about this later!
If we get more data

• 1 Nearest Neighbor
 • Converges to perfect solution if clear separation
 • Twice the minimal error rate $2p(1-p)$ for noisy problems
• k-Nearest Neighbor
 • Converges to perfect solution if clear separation (but needs more data)
 • Converges to minimal error $\min(p, 1-p)$ for noisy problems if k increases
Weighted K-Nearest Neighbor

• Given: Training data ((x_1,y_1),..., (x_n,y_n))
 – Attribute vectors: x_i \in X
 – Target attribute y_i \in Y

• Parameter:
 – Similarity function: K : X \times X \to R
 – Number of nearest neighbors to consider: k

• Prediction rule
 – New example x’
 – K-nearest neighbors: k train examples with largest K(x_i,x’)

\[
h(x’) = \arg \max_{y \in Y} \left\{ \sum_{i \in \text{knn}(x’)} 1_{[y_i = y]} K(x_i, x’) \right\}
\]
More Nearest Neighbors in Visual Data
Where in the World? [Hays & Efros, CVPR 2008]

A nearest neighbor recognition example
Where in the World? [Hays & Efros, CVPR 2008]
Where in the World? [Hays & Efros, CVPR 2008]
6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users
6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users
Scene Matches
Scene Matches
Scene Matches
The Importance of Data

![Graph showing percentage of geolocations within 200km vs. database size (log scale). The graph includes a green line representing the first nearest neighbor scene match and a red dashed line representing chance-random scenes. The x-axis represents database size in thousands of images, and the y-axis represents the percentage of geolocations.]
Scene Completion [Hays & Efros, SIGGRAPH07]
Context Matching
Graph cut + Poisson blending
Weighted K-NN for Regression

• Given: Training data \((x_1,y_1), \ldots, (x_n,y_n)\)
 – Attribute vectors: \(x_i \in X\)
 – Target attribute \(y_i \in \mathcal{R}\)

• Parameter:
 – Similarity function: \(K : X \times X \rightarrow \mathcal{R}\)
 – Number of nearest neighbors to consider: \(k\)

• Prediction rule
 – New example \(x'\)
 – K-nearest neighbors: \(k\) train examples with largest \(K(x_i, x')\)

\[
h(x') = \frac{\sum_{i \in \text{knn}(x')} y_i K(x_i, x')}{\sum_{i \in \text{knn}(x')} K(x_i, x')}
\]
Collaborative Filtering

<table>
<thead>
<tr>
<th>Rating Matrix</th>
<th>m_1</th>
<th>m_2</th>
<th>m_3</th>
<th>m_4</th>
<th>m_5</th>
<th>m_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>1</td>
<td>5</td>
<td></td>
<td>3</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>u_2</td>
<td></td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>u_3</td>
<td>2</td>
<td></td>
<td>4</td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>u</td>
<td>?</td>
<td>1</td>
<td>4</td>
<td></td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Recently Watched
- "The Last Enemy"
- "MI-5"

Top 10 for Thorsten
- "The Hangover"
- "30 Rock"
- "The Office"
Overview of Nearest Neighbors

• Very simple method

• Retain all training data
 - Can be slow in testing
 - Finding NN in high dimensions is slow

• Metrics are very important

• Good baseline
Next Class:

Linear Regression and Least Squares