Lecture 12:

- Computational Graph
- Backpropagation
Last time…

Multilayer Perceptron

- Layer Representation
 \[y_i = W_i x_i \]
 \[x_{i+1} = \sigma(y_i) \]

- (typically) iterate between linear mapping \(Wx \) and nonlinear function

- Loss function \(l(y, y_i) \) to measure quality of estimate so far
Last time… Forward Pass

Output of the network can be written as:

\[h_j(x) = f(v_{j0} + \sum_{i=1}^{D} x_i v_{ji}) \]

\[o_k(x) = g(w_{k0} + \sum_{j=1}^{J} h_j(x) w_{kj}) \]

(j indexing hidden units, k indexing the output units, D number of inputs)

Activation functions \(f, g \): sigmoid/logistic, tanh, or rectified linear (ReLU)

\[\sigma(z) = \frac{1}{1 + \exp(-z)} \], \[\tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)} \], \[\text{ReLU}(z) = \max(0, z) \]
Last time... **Forward Pass in Python**

- Example code for a forward pass for a 3-layer network in Python:

```python
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x))  # activation function (use sigmoid)
x = np.random.randn(3, 1)  # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1)  # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2)  # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3  # output neuron (1x1)
```

- Can be implemented efficiently using matrix operations
- Example above: W_1 is matrix of size 4×3, W_2 is 4×4. What about biases and W_3?

[http://cs231n.github.io/neural-networks-1/]
Last time... **Mini-batch Gradient Descent**

- only use a small portion of the training set to compute the gradient

```python
# Vanilla Minibatch Gradient Descent

while True:
    data_batch = sample_training_data(data, 256)  # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad  # perform parameter update
```

there are also more fancy update formulas (momentum, Adagrad, RMSProp, Adam, ...)

(image credits to Alec Radford)
Back-propagation
Computational Graph

\[f = Wx \]

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]
Convolutional Network (AlexNet)
Neural Turing Machine
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \[\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \frac{\partial f}{\partial z} \]
\[f(x, y, z) = (x + y)z \]

E.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

\[e.g. \ x = -2, \ y = 5, \ z = -4 \]

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \ \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \ \frac{\partial f}{\partial z} = q \]

Want: \[\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \]
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \[\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \frac{\partial f}{\partial z} \]
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \\
\frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \\
\frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)

Chain rule:

\[
\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}
\]
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)

Chain rule:
\[
\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}
\]
activations

\(f \)

\(x \)

\(y \)

\(z \)
activations

\[\frac{\partial z}{\partial x} \]

\[\frac{\partial z}{\partial y} \]

"local gradient"

\[f \]

\[z \]
activations

\[f \]

\[\frac{\partial z}{\partial x} \]

\[\frac{\partial z}{\partial y} \]

\[\frac{\partial L}{\partial z} \]

gradients

“local gradient”
activations

\[\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x} \]

"local gradient"

\[\frac{\partial z}{\partial x} \]

\[\frac{\partial z}{\partial y} \]

\[\frac{\partial L}{\partial z} \]

gradients
\[\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \cdot \frac{\partial z}{\partial x} \]

\[\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \cdot \frac{\partial z}{\partial y} \]

The diagram illustrates the relationships between activations, gradients, and the function \(f \).
The gradient of a function f with respect to its inputs x, y, and z can be computed using the chain rule.

- The gradient with respect to x is given by $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$.
- The gradient with respect to y is given by $\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y}$.
- The gradient of z with respect to x is $\frac{\partial z}{\partial x}$.
- The gradient of z with respect to y is $\frac{\partial z}{\partial y}$.

These gradients help in understanding how changes in the inputs affect the output of the function, which is crucial in optimization tasks.
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
\frac{d}{dx} f(x) &= e^x \\
f_a(x) &= a x \\
\frac{d}{dx} f_a(x) &= a \\
f_c(x) &= c + x \\
\frac{d}{dx} f_c(x) &= 1
\end{align*}
\]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
 f(x) &= e^x & \Rightarrow & \quad \frac{df}{dx} = e^x \\
 f_a(x) &= ax & \Rightarrow & \quad \frac{df}{dx} = a \\
 f_c(x) &= c + x & \Rightarrow & \quad \frac{df}{dx} = 1
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[(-\frac{1}{1.37^2})(1.00) = -0.53 \]

\[f(x) = e^x \] \[\Rightarrow \] \[\frac{df}{dx} = e^x \]

\[f_a(x) = ax \] \[\Rightarrow \] \[\frac{df}{dx} = a \]

\[f(x) = \frac{1}{x} \] \[\Rightarrow \] \[\frac{df}{dx} = -\frac{1}{x^2} \]

\[f_c(x) = c + x \] \[\Rightarrow \] \[\frac{df}{dx} = 1 \]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[f(x) = e^x \quad \Rightarrow \quad \frac{df}{dx} = e^x \]
\[f_a(x) = ax \quad \Rightarrow \quad \frac{df}{dx} = a \]
\[f_c(x) = c + x \quad \Rightarrow \quad \frac{df}{dx} = 1 \]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
 f(x) &= e^x \\
 f_a(x) &= ax \\

 \frac{df}{dx} &= e^x \\
 \frac{df}{dx} &= a \\

 f(x) &= \frac{1}{x} \\
 f_c(x) &= c + x \\

 \frac{df}{dx} &= -\frac{1}{x^2} \\
 \frac{df}{dx} &= 1
\end{align*}
\]

\[(1)(-0.53) = -0.53\]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x \]

\[f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a \]

\[f(x) = \frac{1}{x} \quad \rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2} \]

\[f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1 \]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
(e^{-1})(-0.53) = -0.20
\]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[(-1) \times (-0.20) = 0.20 \]

\[f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x \]
\[f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a \]
\[f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1 \]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x \quad \rightarrow \quad f(x) = \frac{1}{x} \quad \rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2} \]

\[f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a \quad \rightarrow \quad f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1 \]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
\text{[local gradient]} \times \text{[its gradient]} \\
[1] \times [0.2] &= 0.2 \\
[1] \times [0.2] &= 0.2 \quad \text{(both inputs!)}
\end{align*}
\]

\[
\begin{align*}
f(x) &= e^x \\
\frac{df}{dx} &= e^x \\
f(x) &= \frac{1}{x} \\
\frac{df}{dx} &= -\frac{1}{x^2}
\end{align*}
\]

\[
\begin{align*}
f_a(x) &= ax \\
\frac{df}{dx} &= a \\
f_c(x) &= c + x \\
\frac{df}{dx} &= 1
\end{align*}
\]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
 f(x) &= e^x \
 f_a(x) &= ax
\end{align*}
\]

\[
\begin{align*}
 \frac{df}{dx} &= e^x \
 \frac{df}{dx} &= a
\end{align*}
\]

\[
\begin{align*}
 f(x) &= \frac{1}{x} \
 f_c(x) &= c + x
\end{align*}
\]

\[
\begin{align*}
 \frac{df}{dx} &= -\frac{1}{x^2} \
 \frac{df}{dx} &= 1
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

[local gradient] \times [its gradient]

\[x_0 : [2] \times [0.2] = 0.4 \]
\[w_0 : [-1] \times [0.2] = -0.2 \]

\[f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x \]
\[f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a \]

\[f(x) = \frac{1}{x} \quad \rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2} \]
\[f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1 \]
\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

\[\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}} \right) \left(\frac{1}{1 + e^{-x}} \right) = (1 - \sigma(x))\sigma(x) \]
\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}} \right) \left(\frac{1}{1 + e^{-x}} \right) = (1 - \sigma(x)) \sigma(x)
\]

sigmoid function

\[
\sigma(x) = \frac{1}{1 + e^{-x}}
\]

sigmoid gate

\[(0.73) \times (1 - 0.73) = 0.2\]
Patterns in backward flow

- **add** gate: gradient distributor
- **max** gate: gradient router
- **mul** gate: gradient... “switcher”?
Gradients add at branches
Implementation: forward/backward API

Graph (or Net) object. (Rough pseudo code)

```python
class ComputationalGraph(object):
    #...
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes_topologically_sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs_gradients
```

![Graph](image)
Implementation: forward/backward API

```
class MultiplyGate(object):
    def forward(x, y):
        z = x*y
        return z
    def backward(dz):
        # dx = ... #todo
        # dy = ... #todo
        return [dx, dy]
```

(x, y, z are scalars)
Implementation: forward/backward API

(x, y, z are scalars)

class MultiplyGate(object):
 def forward(x, y):
 z = x*y
 self.x = x # must keep these around!
 self.y = y
 return z
 def backward(dz):
 dx = self.y * dz # [dz/dx * dL/dz]
 dy = self.x * dz # [dz/dy * dL/dz]
 return [dx, dy]
Summary

• neural nets will be very large: no hope of writing down gradient formula by hand for all parameters

• **backpropagation** = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates

• implementations maintain a graph structure, where the nodes implement the `forward()` / `backward()` API.

• **forward**: compute result of an operation and save any intermediates needed for gradient computation in memory

• **backward**: apply the chain rule to compute the gradient of the loss function with respect to the inputs.
Where are we now...

Mini-batch SGD

Loop:
1. **Sample** a batch of data
2. **Forward** prop it through the graph, get loss
3. **Backprop** to calculate the gradients
4. **Update** the parameters using the gradient
Next Lecture:
Convolutional Neural Networks