Lecture 20:

- AdaBoost
Last time… Bias/Variance Tradeoff

Graphical illustration of bias and variance.

http://scott.fortmann-roe.com/docs/BiasVariance.html
Last time… Bagging

- Leo Breiman (1994)
- Take repeated bootstrap samples from training set D.
- **Bootstrap sampling:** Given set D containing N training examples, create D’ by drawing N examples at random with replacement from D.

- **Bagging:**
 - Create k bootstrap samples $D_1 \ldots D_k$.
 - Train distinct classifier on each D_i.
 - Classify new instance by majority vote / average.

\[
Var(\text{Bagging}(L(x, D))) = \frac{Var(L(x, D))}{N}
\]
Last time... Random Forests

1. For $b = 1$ to B:

 (a) Draw a bootstrap sample Z^* of size N from the training data.

 (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.

 i. Select m variables at random from the p variables.

 ii. Pick the best variable/split-point among the m.

 iii. Split the node into two daughter nodes.

2. Output the ensemble of trees $\{T_b\}_1^B$.

\[
p(c|v) = \frac{1}{T} \sum_{t}^{T} p_t(c|v)
\]
Last time... Boosting

- **Idea:** given a weak learner, run it multiple times on (rewighted) training data, then let the learned classifiers vote

- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis – h_t
 - A strength for this hypothesis – a_t

- Final classifier:
 - A linear combination of the votes of the different classifiers weighted by their strength $H(X) = \text{sign} \left(\sum a_t h_t(X) \right)$

- Practically useful
- Theoretically interesting
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)

Initialize \(D_1(i) = 1/m\).

For \(t = 1, \ldots, T\):

- Train weak learner using distribution \(D_t\).
- Get weak classifier \(h_t : X \rightarrow \mathbb{R}\).
- Choose \(\alpha_t \in \mathbb{R}\).
- Update:

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is a normalization factor

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
\]
Voted combination of classifiers

• The general problem here is to try to combine many simple “weak” classifiers into a single “strong” classifier

• We consider voted combinations of simple binary ±1 component classifiers

\[h_m(x) = \alpha_1 h(x; \theta_1) + \ldots + \alpha_m h(x; \theta_m) \]

where the (non-negative) votes \(\alpha_i \) can be used to emphasize component classifiers that are more reliable than others
Components: Decision stumps

• Consider the following simple family of component classifiers generating ±1 labels:

\[h(x; \theta) = \text{sign}(w_1 x_k - w_0) \]

where \(\theta = \{k, w_1, w_0\} \). These are called decision stumps.

• Each decision stump pays attention to only a single component of the input vector.
Voted combinations (cont’d.)

- We need to define a loss function for the combination so we can determine which new component $h(x; \theta)$ to add and how many votes it should receive

$$h_m(x) = \alpha_1 h(x; \theta_1) + \ldots + \alpha_m h(x; \theta_m)$$

- While there are many options for the loss function we consider here only a simple exponential loss

$$\sum_{i=1}^{n} \exp\{-y \, h_m(x)\}$$
Modularity, errors, and loss

- Consider adding the \(m^{th} \) component:

\[
\sum_{i=1}^{n} \exp\{ -y_i [h_{m-1}(x_i) + \alpha_m h(x_i; \theta_m)] \} \\
= \sum_{i=1}^{n} \exp\{ -y_i h_{m-1}(x_i) - y_i \alpha_m h(x_i; \theta_m) \}
\]
Modularity, errors, and loss

• Consider adding the m^{th} component:

\[
\sum_{i=1}^{n} \exp\{ -y_i [h_{m-1}(x_i) + \alpha_m h(x_i; \theta_m)] \}
\]

\[
= \sum_{i=1}^{n} \exp\{ -y_i h_{m-1}(x_i) - y_i \alpha_m h(x_i; \theta_m) \}
\]

\[
= \sum_{i=1}^{n} \left[\exp\{ -y_i h_{m-1}(x_i) \} \right] \exp\{ -y_i \alpha_m h(x_i; \theta_m) \}
\]

fixed at stage m
Modularity, errors, and loss

- Consider adding the m^{th} component:

\[
\sum_{i=1}^{n} \exp\{ -y_i[h_{m-1}(x_i) + \alpha_m h(x_i; \theta_m)] \}
\]

\[
= \sum_{i=1}^{n} \exp\{ -y_i h_{m-1}(x_i) - y_i \alpha_m h(x_i; \theta_m) \}
\]

\[
= \sum_{i=1}^{n} \underbrace{\exp\{ -y_i h_{m-1}(x_i) \}}_{\text{fixed at stage } m} \exp\{ -y_i \alpha_m h(x_i; \theta_m) \}
\]

- So at the m^{th} iteration the new component (and the votes) should optimize a weighted loss (weighted towards mistakes).
Empirical exponential loss (cont’d.)

• To increase modularity we’d like to further decouple the optimization of $h(x; \theta_m)$ from the associated votes α_m

• To this end we select $h(x; \theta_m)$ that optimizes the rate at which the loss would decrease as a function of α_m

$$\frac{\partial}{\partial \alpha_m} \sum_{i=1}^{n} W_i^{(m-1)} \exp\{-y_i \alpha_m h(x_i; \theta_m)\} =$$

$$= \left[\sum_{i=1}^{n} W_i^{(m-1)} \exp\{-y_i \alpha_m h(x_i; \theta_m)\} \cdot (-y_i h(x_i; \theta_m)) \right]_{\alpha_m=0}$$
Empirical exponential loss (cont’d.)

• We find \(h(x; \hat{\theta}_m) \) that minimizes

\[
- \sum_{i=1}^{n} W_i^{(m-1)} y_i h(x_i; \theta_m)
\]

• We can also normalize the weights:

\[
- \sum_{i=1}^{n} \frac{W_i^{(m-1)}}{\sum_{j=1}^{n} W_j^{(m-1)}} y_i h(x_i; \theta_m)
\]

\[
= - \sum_{i=1}^{n} \tilde{W}_i^{(m-1)} y_i h(x_i; \theta_m)
\]

so that \(\sum_{i=1}^{n} \tilde{W}_i^{(m-1)} = 1 \).
Empirical exponential loss (cont’d.)

- We find $h(x; \hat{\theta}_m)$ that minimizes

$$- \sum_{i=1}^{n} W_i^{(m-1)} y_i h(x_i; \theta_m)$$

where $\sum_{i=1}^{n} \tilde{W}_i^{(m-1)} = 1$.

- α_m is subsequently chosen to minimize

$$\sum_{i=1}^{n} \tilde{W}_i^{(m-1)} \exp\{-y_i \alpha_m h(x_i; \hat{\theta}_m)\}$$
The AdaBoost Algorithm

0) Set $\tilde{W}_i^{(0)} = 1/n$ for $i = 1, \ldots, n$

1) At the m^{th} iteration we find (any) classifier $h(x; \hat{\theta}_m)$ for which the weighted classification error ϵ_m

$$\epsilon_m = 0.5 - \frac{1}{2} \left(\sum_{i=1}^{n} \tilde{W}_i^{(m-1)} y_i h(x_i; \hat{\theta}_m) \right)$$

is better than chance.

2) The new component is assigned votes based on its error:

$$\hat{\alpha}_m = 0.5 \log \left(\frac{(1 - \epsilon_m)/\epsilon_m} \right)$$

3) The weights are updated according to (Z_m is chosen so that the new weights $\tilde{W}_i^{(m)}$ sum to one):

$$\tilde{W}_i^{(m)} = \frac{1}{Z_m} \cdot \tilde{W}_i^{(m-1)} \cdot \exp \left\{ -y_i \hat{\alpha}_m h(x_i; \hat{\theta}_m) \right\}$$
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)
The AdaBoost Algorithm

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$
Initialise weights $D_1(i) = 1/m$
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T\):

1. Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) \mathbb{I}[y_i \neq h_j(x_i)]\)
2. If \(\epsilon_t \geq 1/2\) then stop
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = \frac{1}{m}\)

For \(t = 1, \ldots, T:\)

\(\bullet\) Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) [y_i \neq h_j(x_i)]\)

\(\bullet\) If \(\epsilon_t \geq 1/2\) then stop

\(\bullet\) Set \(\alpha_t = \frac{1}{2} \log \left(\frac{1-\epsilon_t}{\epsilon_t}\right)\)
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)
Initialise weights \(D_1(i) = 1/m\)
For \(t = 1, \ldots, T\):

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) \mathbb{1}[y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log\left(\frac{1-\epsilon_t}{\epsilon_t}\right)\)
- Update

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is normalisation factor
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)
Initialise weights \(D_1(i) = 1/m\)
For \(t = 1, \ldots, T:\)

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i)[y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log\left(\frac{1-\epsilon_t}{\epsilon_t}\right)\)
- Update \(D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}\)

where \(Z_t\) is normalisation factor

Output the final classifier:

\[H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right) \]
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T\):

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i)[y_i \neq h_j(x_i)]\)

- If \(\epsilon_t \geq 1/2\) then stop

- Set \(\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})\)

- Update

\[D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}\]

where \(Z_t\) is normalisation factor

Output the final classifier:

\[H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)\]
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T:\)

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) \mathbb{1}_{y_i \neq h_j(x_i)}\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log\left(\frac{1-\epsilon_t}{\epsilon_t}\right)\)
- Update

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is normalisation factor

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)
\]
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)
Initialise weights \(D_1(i) = 1/m\)
For \(t = 1, \ldots, T:\)

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) [y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log \left(\frac{1-\epsilon_t}{\epsilon_t} \right)\)
- Update

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is normalisation factor

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)
\]
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m)\); \(x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T\):

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i)[y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log \left(\frac{1-\epsilon_t}{\epsilon_t} \right)\)
- Update

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is normalisation factor

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)
\]
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T:\)

- Find \(h_t = \text{arg min}_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) [y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)\)
- Update

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is normalisation factor

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)
\]
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T:\)

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) \mathbb{I}[y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)\)
- Update \(D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}\)

where \(Z_t\) is normalisation factor

Output the final classifier:

\[H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right) \]
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T:\)

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) \mathbb{1}[y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log\left(\frac{1-\epsilon_t}{\epsilon_t}\right)\)
- Update

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is normalisation factor

Output the final classifier:

\[
H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)
\]
Reweighting

Effect on the training set

\[D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \]

\[\exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases} \]

⇒ Increase (decrease) weight of wrongly (correctly) classified examples

⇒ The weight is the upper bound on the error of a given example

⇒ All information about previously selected “features” is captured in \(D_t \)
Reweighting

Effect on the training set

\[D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \]

\[\exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases} \]

⇒ Increase (decrease) weight of wrongly (correctly) classified examples

⇒ The weight is the upper bound on the error of a given example

⇒ All information about previously selected "features" is captured in \(D_t \)
Reweighting

Effect on the training set

\[D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \]

\[
\exp(-\alpha_t y_i h_t(x_i)) \begin{cases}
< 1, & y_i = h_t(x_i) \\
> 1, & y_i \neq h_t(x_i)
\end{cases}
\]

⇒ Increase (decrease) weight of wrongly (correctly) classified examples

⇒ The weight is the upper bound on the error of a given example

⇒ All information about previously selected “features” is captured in \(D_t \)
Boosting results – Digit recognition

- Boosting often (but not always)
 - Robust to overfitting
 - Test set error decreases even after training error is zero

[Schapire, 1989]
Application: Detecting Faces

- Training Data
 - 5000 faces
 - All frontal
 - 300 million non-faces
 - 9500 non-face images

[Viola & Jones]
Application: Detecting Faces

- **Problem:** find faces in photograph or movie
- **Weak classifiers:** detect light/dark rectangle in image

 ![Detection](image1.png)

- Many clever tricks to make extremely fast and accurate

[Viola & Jones]
Boosting vs. Logistic Regression

Logistic regression:
- Minimize log loss
 \[
 \sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))
 \]
- Define
 \[f(x) = \sum_j w_j x_j\]
 where \(x_j\) predefined features (linear classifier)
- Jointly optimize over all weights \(w_0, w_1, w_2, \ldots\)

Boosting:
- Minimize exp loss
 \[
 \sum_{i=1}^{m} \exp(-y_i f(x_i))
 \]
- Define
 \[f(x) = \sum_t \alpha_t h_t(x)\]
 where \(h_t(x)\) defined dynamically to fit data (not a linear classifier)
- Weights \(\alpha_t\) learned per iteration \(t\) incrementally
Boosting vs. Bagging

Bagging:
- Resample data points
- Weight of each classifier is the same
- Only variance reduction

Boosting:
- Reweights data points (modifies their distribution)
- Weight is dependent on classifier’s accuracy
- Both bias and variance reduced – learning rule becomes more complex with iterations