Lecture 20:

- AdaBoost
Last time... **Bias/Variance Tradeoff**

Graphical illustration of bias and variance.

http://scott.fortmann-roe.com/docs/BiasVariance.html
Last time... Bagging

- Leo Breiman (1994)
- Take repeated bootstrap samples from training set D.
- **Bootstrap sampling:** Given set D containing N training examples, create D’ by drawing N examples at random with replacement from D.

- **Bagging:**
 - Create *k* bootstrap samples D₁ ... Dₖ.
 - Train distinct classifier on each Dᵢ.
 - Classify new instance by majority vote / average.

\[
Var(Bagging(L(x, D)))) = \frac{Var(L(x, D))}{N}
\]
1. For $b = 1$ to B:

 (a) Draw a bootstrap sample Z^* of size N from the training data.

 (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.

 i. Select m variables at random from the p variables.

 ii. Pick the best variable/split-point among the m.

 iii. Split the node into two daughter nodes.

2. Output the ensemble of trees $\{T_b\}_1^B$.

$$p(c|v) = \frac{1}{T} \sum_t p_t(c|v)$$
Boosting
Boosting Ideas

• Main idea: use weak learner to create strong learner.

• Ensemble method: combine base classifiers returned by weak learner.

• Finding simple relatively accurate base classifiers often not hard.

• But, how should base classifiers be combined?
Example: “How May I Help You?”

- **Goal:** automatically categorize type of call requested by phone customer (Collect, CallingCard, PersonToPerson, etc.)
 - yes I’d like to place a collect call long distance please (Collect)
 - operator I need to make a call but I need to bill it to my office (ThirdNumber)
 - yes I’d like to place a call on my master card please (CallingCard)
 - I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill (BillingCredit)

- **Observation:**
 - easy to find “rules of thumb” that are “often” correct
 - e.g.: “IF ‘card’ occurs in utterance THEN predict ‘CallingCard’ ”
 - hard to find single highly accurate prediction rule
Boosting: Intuition

• Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space

• Output class: (Weighted) vote of each classifier
 - Classifiers that are most “sure” will vote with more conviction
 - Classifiers will be most “sure” about a particular part of the space
 - On average, do better than single classifier!

• But how do you???
 - force classifiers to learn about different parts of the input space?
 - weigh the votes of different classifiers?
Boosting [Schapire, 1989]

- **Idea:** given a weak learner, run it multiple times on (rewighted) training data, then let the learned classifiers vote

- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis – h_t
 - A strength for this hypothesis – a_t

- Final classifier:
 - A linear combination of the votes of the different classifiers weighted by their strength $H(X) = \text{sign} \left(\sum \alpha_t h_t(X) \right)$

- Practically useful
- Theoretically interesting
Boosting: Intuition

- Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for \(m=1, \ldots, M \)
 - Pick a weak classifier \(h_m \)
 - Adjust weights: misclassified examples get “heavier”
 - \(\alpha_m \) set according to weighted error of \(h_m \)

[Source: G. Shakhnarovich]
Boosting: Intuition

• Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for \(m=1,...,M \)

• Pick a weak classifier \(h_m \)
• Adjust weights: misclassified examples get “heavier”
• \(\alpha_m \) set according to weighted error of \(h_m \)

[Source: G. Shakhnarovich]
Boosting: Intuition

- Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for $m=1,...,M$
 - Pick a weak classifier h_m
 - Adjust weights: misclassified examples get “heavier”
 - α_m set according to weighted error of h_m

[Source: G. Shakhnarovich]
Boosting: Intuition

• Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for \(m=1,\ldots,M \)

• Pick a weak classifier \(h_m \)

• Adjust weights: misclassified examples get “heavier”

• \(\alpha_m \) set according to weighted error of \(h_m \)

[Source: G. Shakhnarovich]
Boosting: Intuition

- Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for $m=1,...,M$

- Pick a weak classifier h_m
- Adjust weights: misclassified examples get “heavier”
- α_m set according to weighted error of h_m

[Source: G. Shakhnarovich]
Boosting: Intuition

- Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for $m=1,\ldots,M$
- Pick a weak classifier h_m
- Adjust weights: misclassified examples get “heavier”
- α_m set according to weighted error of h_m

[Source: G. Shakhnarovich]
Boosting: Intuition

- Want to pick weak classifiers that contribute something to the ensemble

Greedy algorithm: for $m=1,...,M$

- Pick a weak classifier h_m
- Adjust weights: misclassified examples get “heavier”
- α_m set according to weighted error of h_m
First Boosting Algorithms

• [Schapire ’89]:
 - first provable boosting algorithm

• [Freund ’90]:
 - “optimal” algorithm that “boosts by majority”

• [Drucker, Schapire & Simard ’92]:
 - first experiments using boosting
 - limited by practical drawbacks

• [Freund & Schapire ’95]:
 - introduced “AdaBoost” algorithm
 - strong practical advantages over previous boosting algorithms
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)

Initialize \(D_1(i) = 1/m\).

For \(t = 1, \ldots, T\):

- Train weak learner using distribution \(D_t\).
- Get weak classifier \(h_t : X \to \mathbb{R}\).
- Choose \(\alpha_t \in \mathbb{R}\).
- Update:

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is a normalization factor

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
\]
Toy Example

Minimize the error

$$\epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i]$$

For binary h_t, typically use

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

weak hypotheses = vertical or horizontal half-planes
Round 1

h_1

Slide by Rob Schapire
Round 1

\[h_1 \]

\[\epsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]
Round 1

\[h_1 \]

\[D_2 \]

\[\varepsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]

slide by Rob Schapire
Round 2

\[\alpha = 0.21 \]

\[\varepsilon = 0.65 \]

slide by Rob Schapire
Round 2

\[\varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.65 \]
Round 2

$\varepsilon_2 = 0.21$

$\alpha_2 = 0.65$
Round 3

\[h_3 = 0.92 \]

\[\alpha = 0.14 \]
Round 3

\[h_3 \]

\[\varepsilon_3 = 0.14 \]

\[\alpha_3 = 0.92 \]
Final Hypothesis

\[H_{\text{final}} = \text{sign}(0.42 + 0.65 + 0.92) \]
Voted combination of classifiers

• The general problem here is to try to combine many simple “weak” classifiers into a single “strong” classifier.

• We consider voted combinations of simple binary ± 1 component classifiers

$$h_m(x) = \alpha_1 h(x; \theta_1) + \ldots + \alpha_m h(x; \theta_m)$$

where the (non-negative) votes α_i can be used to emphasize component classifiers that are more reliable than others.
Components: Decision stumps

- Consider the following simple family of component classifiers generating ± 1 labels:

$$h(x; \theta) = \text{sign}(w_1 x_k - w_0)$$

where $\theta = \{k, w_1, w_0\}$. These are called decision stumps.

- Each decision stump pays attention to only a single component of the input vector.
Voted combinations (cont’d.)

• We need to define a loss function for the combination so we can determine which new component \(h(x; \theta) \) to add and how many votes it should receive

\[
h_m(x) = \alpha_1 h(x; \theta_1) + \ldots + \alpha_m h(x; \theta_m)
\]

• While there are many options for the loss function we consider here only a simple exponential loss

\[
\sum_{i=1}^{n} \exp\{-y_i h_m(x)\}
\]
Modularity, errors, and loss

- Consider adding the m^{th} component:

\[
\sum_{i=1}^{n} \exp\{-y_i[h_{m-1}(x_i) + \alpha_m h(x_i; \theta_m)]\} = \sum_{i=1}^{n} \exp\{-y_i h_{m-1}(x_i) - y_i \alpha_m h(x_i; \theta_m)\}
\]
Modularity, errors, and loss

- Consider adding the m^{th} component:

\[
\sum_{i=1}^{n} \exp\{-y_i[h_{m-1}(x_i) + \alpha_m h(x_i; \theta_m)]\}
\]

\[
= \sum_{i=1}^{n} \exp\{-y_i h_{m-1}(x_i) - y_i \alpha_m h(x_i; \theta_m)\}
\]

\[
= \sum_{i=1}^{n} \underbrace{\exp\{-y_i h_{m-1}(x_i)\}}_{\text{fixed at stage } m} \exp\{-y_i \alpha_m h(x_i; \theta_m)\}
\]
Modularity, errors, and loss

- Consider adding the m^{th} component:

\[
\sum_{i=1}^{n} \exp\left\{ -y_i [h_{m-1}(x_i) + \alpha_m h(x_i; \theta_m)] \right\}
\]

\[
= \sum_{i=1}^{n} \exp\left\{ -y_i h_{m-1}(x_i) - y_i \alpha_m h(x_i; \theta_m) \right\}
\]

\[
= \sum_{i=1}^{n} \underbrace{\exp\left\{ -y_i h_{m-1}(x_i) \right\}}_{\text{fixed at stage } m} \exp\left\{ -y_i \alpha_m h(x_i; \theta_m) \right\}
\]

- So at the m^{th} iteration the new component (and the votes) should optimize a weighted loss (weighted towards mistakes).
Empirical exponential loss (cont’d.)

- To increase modularity we’d like to further decouple the optimization of \(h(x; \theta_m) \) from the associated votes \(\alpha_m \).
- To this end we select \(h(x; \theta_m) \) that optimizes the rate at which the loss would decrease as a function of \(\alpha_m \):

\[
\frac{\partial}{\partial \alpha_m} \left. \sum_{i=1}^{n} W_i^{(m-1)} \exp\{ -y_i \alpha_m h(x_i; \theta_m) \} \right|_{\alpha_m=0} = \\
\sum_{i=1}^{n} W_i^{(m-1)} \exp\{ -y_i \alpha_m h(x_i; \theta_m) \} \cdot (- y_i h(x_i; \theta_m)) \\
= \sum_{i=1}^{n} W_i^{(m-1)} (- y_i h(x_i; \theta_m))
\]
Empirical exponential loss (cont’d.)

• We find \(h(x; \hat{\theta}_m) \) that minimizes

\[
- \sum_{i=1}^{n} W_i^{(m-1)} y_i h(x_i; \theta_m)
\]

• We can also normalize the weights:

\[
- \sum_{i=1}^{n} \frac{W_i^{(m-1)}}{\sum_{j=1}^{n} W_j^{(m-1)}} y_i h(x_i; \theta_m)
\]

\[
= - \sum_{i=1}^{n} \tilde{W}_i^{(m-1)} y_i h(x_i; \theta_m)
\]

so that \(\sum_{i=1}^{n} \tilde{W}_i^{(m-1)} = 1 \).
Empirical exponential loss (cont’d.)

- We find $h(x; \hat{\theta}_m)$ that minimizes

$$- \sum_{i=1}^{n} W_i^{(m-1)} y_i h(x_i; \theta_m)$$

where $\sum_{i=1}^{n} \tilde{W}_i^{(m-1)} = 1$.

- α_m is subsequently chosen to minimize

$$\sum_{i=1}^{n} \tilde{W}_i^{(m-1)} \exp \{-y_i \alpha_m h(x_i; \hat{\theta}_m)\}$$
The AdaBoost Algorithm

0) Set $\tilde{W}_i^{(0)} = 1/n$ for $i = 1, \ldots, n$

1) At the m^{th} iteration we find (any) classifier $h(x; \hat{\theta}_m)$ for which the weighted classification error ϵ_m

$$\epsilon_m = 0.5 - \frac{1}{2} \left(\sum_{i=1}^{n} \tilde{W}_i^{(m-1)} y_i h(x_i; \hat{\theta}_m) \right)$$

is better than chance.

2) The new component is assigned votes based on its error:

$$\hat{\alpha}_m = 0.5 \log \left(\frac{(1 - \epsilon_m)}{\epsilon_m} \right)$$

3) The weights are updated according to (Z_m is chosen so that the new weights $\tilde{W}_i^{(m)}$ sum to one):

$$\tilde{W}_i^{(m)} = \frac{1}{Z_m} \cdot \tilde{W}_i^{(m-1)} \cdot \exp \{ -y_i \hat{\alpha}_m h(x_i; \hat{\theta}_m) \}$$
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m)\); \(x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)
The AdaBoost Algorithm

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$
Initialise weights $D_1(i) = 1/m$
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T\):

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) [y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T:\)

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) [y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log\left(\frac{1-\epsilon_t}{\epsilon_t}\right)\)
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m)\); \(x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T\):

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) [y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)\)
- Update

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is normalisation factor
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T:\)

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) \mathbb{1}[y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log\left(\frac{1-\epsilon_t}{\epsilon_t}\right)\)
- Update

\[D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}\]

where \(Z_t\) is normalisation factor

Output the final classifier:

\[H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)\]
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T\):

\- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i)[y_i \neq h_j(x_i)]\)

\- If \(\epsilon_t \geq 1/2\) then stop

\- Set \(\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})\)

\- Update

\[D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}\]

where \(Z_t\) is normalisation factor

Output the final classifier:

\[H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)\]
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T:\)

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) \mathbb{I}[y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log\left(\frac{1-\epsilon_t}{\epsilon_t}\right)\)
- Update

\[D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}\]

where \(Z_t\) is normalisation factor

Output the final classifier:

\[H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)\]
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m)\); \(x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T\):

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]\)

- If \(\epsilon_t \geq 1/2\) then stop

- Set \(\alpha_t = \frac{1}{2} \log\left(\frac{1-\epsilon_t}{\epsilon_t}\right)\)

- Update

 \[
 D_{t+1}(i) = \frac{D_t(i)e^{-\alpha_ty_i h_t(x_i)}}{Z_t}
 \]

 where \(Z_t\) is normalisation factor

Output the final classifier:

\[
H(x) = \text{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right)
\]
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T:\)

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) [y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})\)
- Update

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is normalisation factor

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)
\]
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T:\)

- Find \(h_t = \arg \min \epsilon_j = \sum_{i=1}^{m} D_t(i)[y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log\left(\frac{1-\epsilon_t}{\epsilon_t}\right)\)
- Update

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is normalisation factor

Output the final classifier:

\[
H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)
\]
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m)\); \(x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T\):

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) [y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log\left(\frac{1-\epsilon_t}{\epsilon_t}\right)\)
- Update

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is normalisation factor

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)
\]
The AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}\)

Initialise weights \(D_1(i) = 1/m\)

For \(t = 1, \ldots, T:\)

- Find \(h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) \mathbb{I}[y_i \neq h_j(x_i)]\)
- If \(\epsilon_t \geq 1/2\) then stop
- Set \(\alpha_t = \frac{1}{2} \log \left(\frac{1-\epsilon_t}{\epsilon_t}\right)\)
- Update

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is normalisation factor

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)
\]
Reweighting

Effect on the training set

\[D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \]

\[\exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases} \]

⇒ Increase (decrease) weight of wrongly (correctly) classified examples

⇒ The weight is the upper bound on the error of a given example

⇒ All information about previously selected “features” is captured in \(D_t \)
Reweighting

Effect on the training set

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

\[
\exp(-\alpha_t y_i h_t(x_i)) \begin{cases}
< 1, & y_i = h_t(x_i) \\
> 1, & y_i \neq h_t(x_i)
\end{cases}
\]

⇒ Increase (decrease) weight of wrongly (correctly) classified examples

⇒ The weight is the upper bound on the error of a given example

⇒ All information about previously selected “features” is captured in \(D_t \)
Reweighting

Effect on the training set

\[D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \]

\[\exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases} \]

\[\Rightarrow \text{Increase (decrease) weight of wrongly (correctly) classified examples} \]

\[\Rightarrow \text{The weight is the upper bound on the error of a given example} \]

\[\Rightarrow \text{All information about previously selected “features” is captured in } D_t \]
Boosting results – Digit recognition

- Boosting often (but not always)
 - Robust to overfitting
 - Test set error decreases even after training error is zero

[Schapire, 1989]
Application: Detecting Faces

- Training Data
 - 5000 faces
 - All frontal
 - 300 million non-faces
 - 9500 non-face images

[Viola & Jones]
Application: Detecting Faces

- **Problem:** find faces in photograph or movie
- **Weak classifiers:** detect light/dark rectangle in image

- Many clever tricks to make extremely fast and accurate

[Viola & Jones]
Boosting vs. Logistic Regression

Logistic regression:
- Minimize log loss
 \[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]
- Define
 \[f(x) = \sum_{j} w_j x_j \]
where \(x_j \) predefined features (linear classifier)
- Jointly optimize over all weights \(w_0, w_1, w_2, \ldots \)

Boosting:
- Minimize exp loss
 \[\sum_{i=1}^{m} \exp(-y_if(x_i)) \]
- Define
 \[f(x) = \sum_{t} \alpha_t h_t(x) \]
where \(h_t(x) \) defined dynamically to fit data (not a linear classifier)
- Weights \(\alpha_t \) learned per iteration \(t \) incrementally
Boosting vs. Bagging

Bagging:
- Resample data points
- Weight of each classifier is the same
- Only variance reduction

Boosting:
- Reweights data points (modifies their distribution)
- Weight is dependent on classifier’s accuracy
- Both bias and variance reduced – learning rule becomes more complex with iterations
Next Lecture:
K-Means Clustering