Last time…
Multilayer Perceptron

• Layer Representation

 $y_i = W_i x_i$

 $x_{i+1} = \sigma(y_i)$

• (typically) iterate between linear mapping Wx and nonlinear function

• Loss function $l(y, y_i)$ to measure quality of estimate so far
• Output of the network can be written as:

\[h_j(x) = f(v_{j0} + \sum_{i=1}^{D} x_i v_{ji}) \]

\[o_k(x) = g(w_{k0} + \sum_{j=1}^{J} h_j(x) w_{kj}) \]

(j indexing hidden units, k indexing the output units, D number of inputs)

• Activation functions \(f, g \): sigmoid/logistic, tanh, or rectified linear (ReLU)

\[\sigma(z) = \frac{1}{1 + \exp(-z)} , \quad \tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)} , \quad \text{ReLU}(z) = \max(0, z) \]
Last time... Forward Pass in Python

- Example code for a forward pass for a 3-layer network in Python:

```python
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x))  # activation function (use sigmoid)
x = np.random.randn(3, 1)  # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1)  # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2)  # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3  # output neuron (1x1)
```

- Can be implemented efficiently using matrix operations
- Example above: W_1 is matrix of size 4×3, W_2 is 4×4. What about biases and W_3?

[http://cs231n.github.io/neural-networks-1/]
Backpropagation
Recap: Loss function/Optimization

1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.

2. Come up with a way of efficiently finding the parameters that minimize the loss function. *(optimization)*

We defined a (linear) **score function**:

\[f(x_i, W, b) = W x_i + b \]
Softmax Classifier (Multinomial Logistic Regression)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

\[s = f(x_i; W) \]

cat \quad 3.2

car \quad 5.1

dog \quad -1.7
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

\[
P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}
\]

where \[s = f(x_i; W) \]

<table>
<thead>
<tr>
<th>cat</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

\[P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

where

\[s = f(x_i; W) \]

<table>
<thead>
<tr>
<th>Cat</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>5.1</td>
</tr>
<tr>
<td>Frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

\[P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

where \(s = f(x_i; W) \)

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

\[L_i = -\log P(Y = y_i|X = x_i) \]

<table>
<thead>
<tr>
<th>cat</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

where \(s = f(x_i; W) \)

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

\[L_i = -\log P(Y = y_i | X = x_i) \]

in summary:

\[L_i = -\log \left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}} \right) \]
Softmax Classifier (Multinomial Logistic Regression)

\[L_i = -\log\left(\frac{e^{s_{yi}}}{\sum_j e^{s_{yj}}} \right) \]

- cat: 3.2
- car: 5.1
- frog: -1.7

unnormalized log probabilities
Softmax Classifier (Multinomial Logistic Regression)

\[L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}} \right) \]

Unnormalized probabilities

<table>
<thead>
<tr>
<th>cat</th>
<th>3.2</th>
<th>24.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>5.1</td>
<td>164.0</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td>0.18</td>
</tr>
</tbody>
</table>
Softmax Classifier (Multinomial Logistic Regression)

\[L_i = - \log \left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}} \right) \]

unnormalized probabilities

<table>
<thead>
<tr>
<th>cat</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>

unnormalized log probabilities

\[\text{exp} \quad 24.5 \quad 164.0 \quad 0.18 \]

normalize

probabilities

\[0.13 \quad 0.87 \quad 0.00 \]
Softmax Classifier (Multinomial Logistic Regression)

\[L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right) \]

Unnormalized log probabilities:

<table>
<thead>
<tr>
<th>cat</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>

Exponentiate:

- cat: \(e^{3.2} = 24.5 \)
- car: \(e^{5.1} = 164.0 \)
- frog: \(e^{-1.7} = 0.18 \)

Normalize:

- cat: \(\frac{24.5}{24.5 + 164.0 + 0.18} = 0.13 \)
- car: \(\frac{164.0}{24.5 + 164.0 + 0.18} = 0.87 \)
- frog: \(\frac{0.18}{24.5 + 164.0 + 0.18} = 0.00 \)

\[L_i = -\log(0.13) = 0.89 \]
Optimization
Gradient Descent

Vanilla Gradient Descent

```python
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad  # perform parameter update
```

In 1-dimension, the derivative of a function:

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

In multiple dimensions, the gradient is the vector of (partial derivatives).
Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient

```python
# Vanilla Minibatch Gradient Descent

while True:
    data_batch = sample_training_data(data, 256)  # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad  # perform parameter update
```
Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient

```python
# Vanilla Minibatch Gradient Descent

while True:
    data_batch = sample_training_data(data, 256)  # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad  # perform parameter update
```

there are also more fancy update formulas (momentum, Adagrad, RMSProp, Adam, …)
The effects of different update form formulas
Example of optimization progress while training a neural network.

(Loss over mini-batches goes down over time.)
The effects of step size (or “learning rate”)

- **Very high learning rate**
- **Low learning rate**
- **High learning rate**
- **Good learning rate**
Computational Graph

\[f = Wx \]

\[L_i = \sum_{j\neq y_i} \max(0, s_j - s_{y_i} + 1) \]
Convolutional Network (AlexNet)

input image
weights

loss
Neural Turing Machine

- input tape
- loss
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)
\(f(x, y, z) = (x + y)z \)

e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want:
\[
\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \frac{\partial f}{\partial z}
\]
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\(f(x, y, z) = (x + y)z \)

e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \]

Chain rule:
\[
\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}
\]
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want:
\[\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \frac{\partial f}{\partial z} \]

Chain rule:
\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} \]
activations

\[\frac{\partial z}{\partial x} \]

\[\frac{\partial z}{\partial y} \]

\[f \]

“local gradient”

\[x \]

\[y \]

\[z \]
activations

\[\frac{\partial z}{\partial x} \]

\[\frac{\partial z}{\partial y} \]

\[\frac{\partial L}{\partial z} \]

"local gradient"

\[f \]

gradients
activations

\[\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \cdot \frac{\partial z}{\partial x} \]

"local gradient"

\[\frac{\partial L}{\partial z} \]

gradients
activations

\[\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \cdot \frac{\partial z}{\partial x} \]

“local gradient”

\[\frac{\partial z}{\partial x} \]

\[\frac{\partial z}{\partial y} \]

\[\frac{\partial L}{\partial z} \]

gradients
activations

\[\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x} \]

"local gradient"

\[\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y} \]

gradients
Another example:

$$f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
f(x) &= e^x \\
f_a(x) &= a x \\
\frac{df}{dx} &= e^x \\
\frac{df}{dx} &= a \\
f(x) &= \frac{1}{x} \\
f_c(x) &= c + x \\
\frac{df}{dx} &= -\frac{1}{x^2} \\
\frac{df}{dx} &= -1
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
 f(x) &= e^x \\
 f_a(x) &= ax
\end{align*}
\]

\[
\begin{align*}
 \frac{df}{dx} - e^x &\quad \rightarrow \\
 \frac{df}{dx} = a &\quad \rightarrow \\
 f(x) = \frac{1}{x} &\quad \rightarrow \\
 \frac{df}{dx} = -\frac{1}{x^2} &\quad \rightarrow \\
 f_c(x) - c + x &\quad \rightarrow \\
 \frac{df}{dx} - 1
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
(-\frac{1}{1.37^2})(1.00) = -0.53
\]

\[
f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x
\]

\[
f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a
\]

\[
f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1
\]

\[
f(x) = \frac{1}{x} \quad \rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2}
\]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[f(x) - e^x \quad \rightarrow \quad \frac{df}{dx} - e^x \]

\[f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a \]

\[f(x) = \frac{1}{x} \quad \rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2} \]

\[f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1 \]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

Calculations:

\[(1)(-0.53) = -0.53 \]

Derivatives:

- \[f(x) = e^x \quad \Rightarrow \quad \frac{df}{dx} = e^x \]
- \[f_a(x) = ax \quad \Rightarrow \quad \frac{df}{dx} = a \]
- \[f_c(x) = c + x \quad \Rightarrow \quad \frac{df}{dx} = 1 \]
- \[f(x) = \frac{1}{x} \quad \Rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2} \]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[f(x) - e^x \quad \rightarrow \quad \frac{df}{dx} - e^x \]

\[f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a \]

\[f(x) = \frac{1}{x} \quad \rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2} \]

\[f_c(x) - c + x \quad \rightarrow \quad \frac{df}{dx} - 1 \]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[(e^{-1})(-0.53) = -0.20 \]

\[
\begin{align*}
 f(x) - e^x & \rightarrow \frac{df}{dx} - e^x \\
 f_a(x) = ax & \rightarrow \frac{df}{dx} = a \\
 f_c(x) - c + x & \rightarrow \frac{df}{dx} = -1/x^2
\end{align*}
\]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[(-1) \times (-0.20) = 0.20 \]
Another example: \[
f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}
\]
Another example: \(f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \)

\[
\begin{align*}
\frac{df}{dx} - e^x & \rightarrow \frac{d^2f}{dx^2} - e^x \\
\frac{df}{dx} = ax & \rightarrow \frac{d^2f}{dx^2} = a \\
\end{align*}
\]

\[
\begin{align*}
f(x) = \frac{1}{x} & \rightarrow \frac{df}{dx} = -\frac{1}{x^2} \\
f_c(x) = c + x & \rightarrow \frac{df}{dx} - 1
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
\frac{df}{dx} - e^x & \quad \frac{df}{dx} = e^x \\
\frac{df}{dx} = a & \quad \frac{df}{dx} = a \\
\frac{df}{dx} = -1/x^2 & \quad \frac{df}{dx} = -1/x^2 \\
\end{align*}
\]
Another example: \(f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \)

[local gradient] \(x \) [its gradient]

\(x_0: [2] \times [0.2] = 0.4 \)
\(w_0: [-1] \times [0.2] = -0.2 \)

\[f(x) = e^x \quad \Rightarrow \quad \frac{df}{dx} = e^x \]
\[f_a(x) = ax \quad \Rightarrow \quad \frac{df}{dx} = a \]
\[f_c(x) = c + x \quad \Rightarrow \quad \frac{df}{dx} = 1 \]
\[f(x) = \frac{1}{x} \quad \Rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2} \]
\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

\[\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}}\right) \left(\frac{1}{1 + e^{-x}}\right) = (1 - \sigma(x)) \sigma(x) \]
\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]
\[
\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}}\right) \left(\frac{1}{1 + e^{-x}}\right) = (1 - \sigma(x)) \sigma(x)
\]

sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2
Patterns in backward flow

- **add** gate: gradient distributor
- **max** gate: gradient router
- **mul** gate: gradient... “switcher”?
Gradients add at branches
Implementation: forward/backward API

Graph (or Net) object. (Rough pseudo code)

```python
class ComputationalGraph(object):
    #...
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes_topologically_sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs_gradients
```
Implementation: forward/backward API

(x, y, z are scalars)
Implementation: forward/backward API

(x,y,z are scalars)

class MultiplyGate(object):
 def forward(x,y):
 z = x*y
 self.x = x # must keep these around!
 self.y = y
 return z
 def backward(dz):
 dx = self.y * dz # [dz/dx * dL/dz]
 dy = self.x * dz # [dz/dy * dL/dz]
 return [dx, dy]
Summary

• neural nets will be very large: no hope of writing down gradient formula by hand for all parameters

• **backpropagation** = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates

• implementations maintain a graph structure, where the nodes implement the **forward()** / **backward()** API.

• **forward**: compute result of an operation and save any intermediates needed for gradient computation in memory

• **backward**: apply the chain rule to compute the gradient of the loss function with respect to the inputs.
Where are we now...

Mini-batch SGD

Loop:
1. Sample a batch of data
2. Forward prop it through the graph, get loss
3. Backprop to calculate the gradients
4. Update the parameters using the gradient
Next Lecture:
Introduction to Deep Learning