BBM 444 – Fundamentals of Computational Photography

Aykut Erdem
Computer Vision Lab (CVL)
Hacettepe University
Today

• Introduction to Computational Photography
• Course Overview
What is Computational Photography?

• An emerging new research area bringing together the advancements in computer graphics, computer vision and image processing to overcome the limitations of conventional photography

• **Digital photography:**
  – Simply replaces traditional sensors and recording by digital technology
  – Involves only simple image processing

• **Computational photography**
  – More elaborate image manipulation, more computation
  – New types of media (panorama, 3D, etc.)
  – Camera design that take computation into account
Depicting Our World: The Beginning

Prehistoric Painting, Lascaux Cave, France
~ 13,000 -- 15,000 B.C.

Slide credit: Alyosha Efros
The Empress Theodora with her court.
Ravenna, St. Vitale 6th c.

Slide credit: Alyosha Efros
Depicting Our World: Middle Ages

*Nuns in Procession*. French ms. ca. 1300.

Slide credit: Alyosha Efros
Depicting Our World: Renaissance

North Doors (1424)

Lorenzo Ghiberti (1378-1455)

East Doors (1452)
Depicting Our World: Renaissance

Paolo Uccello,
Miracle of the Profaned Host (c.1467-9)

Slide credit: Alyosha Efros
Depicting Our World: Song Dynasty (China)

Qingming Festival by the Riverside, Zhang Zeduan ~900 AD

Slide credit: Fei-Fei Li
Depicting Our World: *Edo Period* (Japan)

*The Great Wave off Kanagawa*, part of the series *Thirty-six Views of Mount Fuji*, Hokusai (between 1826 and 1833)
The Ottoman army besieging Vienna, from *Huner-nama* ('Book of Skills'). Nakkas Osman, 1588.
Depicting Our World: Ottoman Miniatures

An Ottoman miniature from *Surname-i Vehbi*, Abdulcelil Levni (1720)
Depicting Our World: Toward Perfection

Jan van Eyck, *The Arnolfini Marriage* (c.1434)

Slide credit: Alyosha Efros
Depicting Our World: *Toward Perfection*

Lens Based Camera Obscura, 1568

Slide credit: Alyosha Efros
Depicting Our World: Perfection!

View from the Window at Le Gras, Joseph Nicéphore Niépce (1826)
Depicting Our World: *Perfection!*

*Still Life*, Louis Jaques Mande Daguerre, 1837

Slide credit: Alyosha Efros
After realism...

Monet,

*La rue Montorgueil*

Slide credit: Alyosha Efros
Depicting Our World: Ongoing Quest

Pablo Picasso

David Hockney

Slide credit: Alyosha Efros
Better than realism?

David Hockney, *Place Furstenberg*, (1985)

Slide credit: Alyosha Efros
Which one is right?

Multiple viewpoints

Single viewpoint

David Hockney,
Place Furstenberg, 1985

Alyosha Efros
Place Furstenberg, 2009

Slide credit: Alyosha Efros
Depicting Our World: Ongoing Quest

Enter Computer Graphics...
Traditional Computer Graphics

3D geometry

physics

Simulation

projection

GRAPHICS

Slide credit: Alyosha Efros
State of the Art

- Amazingly real
- But so sterile, lifeless, futuristic (why?)

Slide credit: Alyosha Efros
The richness of our everyday world

Photo by Svetlana Lazebnik

Slide credit: Alyosha Efros
Beauty in complexity
Which parts are hard to model?
People

From “Final Fantasy”

On the Tube, London

Slide credit: Alyosha Efros
Faces / Hair

From “Final Fantasy”
Hyper-humans
Urban Scenes

Virtual LA (SGI)

Photo of 1 LA

Slide credit: Alyosha Efros
Nature

River Cherwell, Oxford

Slide credit: Alyosha Efros
The Realism Spectrum

**Computer Graphics**

+ easy to create new worlds
+ easy to manipulate objects/viewpoint
- Very hard to look realistic

**Computational Photography**

**Photography**

+ instantly realistic
+ easy to acquire
- very hard to manipulate objects/viewpoint

---

Slide credit: Alyosha Efros
The unfinished revolution

- **Traditional photography:**
  - optics focuses optical array onto sensor
  - chemistry records final image

- **Digital photography**
  - optics focuses optical array onto sensor
  - digital sensor records final image

Slide credit: Fredo Durand
Limitations of traditional photography

- Blur, camera shake, noise, damage

Slide credit: Svetlana Lazebnik
Limitations of traditional photography

• Limited resolution
Limitations of traditional photography

- Bad color / no color

Slide credit: Svetlana Lazebnik
Limitations of traditional photography

- Unwanted objects
Limitations of traditional photography

- Unfortunate expressions
Limitations of traditional photography

• Limited dynamic range
Limitations of traditional photography

- Single viewpoint, static 2D picture
Limitations of traditional photography

• Single depth of focus
Computational Photography

• Arbitrary computation between the optical array and the final image
• Data recorded by sensor is not the final image
Computational Photography

• Arbitrary computation between the optical array and the final image
• Post-process after traditional imaging
  – a.k.a. image processing (maybe more interactive)
  – But also combine multiple images to overcome limits of traditional imaging (HDR, panorama)
• Design imaging architecture together with computation
  – Computational cameras, computational illumination, coded imaging, data-rich imaging
• Extract more than just 2D images
• New media (panorama, photo tourism)
Computational Photography

• How can I use computational techniques to capture light in new ways?

• How can I use computational techniques to breathe new life into the photograph?

• How can I use computational techniques to synthesize and organize photo collections?

Slide credit: Alyosha Efros
Welcome to BBM 444!
Course Information

Instructor: Aykut Erdem (111)
TA: Levent Karacan (CVL)

Lectures (BBM 444): Fridays, 13:00-15:45 @ D9
Practicum (BBM 446): Mondays, 13:00-15:45 @ D9
Office hours: By appointment

Class webpage:
http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2013/bbm444/
Communication

• The course webpage will be updated regularly throughout the semester with lecture notes, programming and reading assignments and important deadlines.
  http://web.cs.hacettepe.edu.tr/~aykut/spring2013/bbm444

• All other communications will be carried out through Piazza. Please enroll it by following the link:
  https://piazza.com/hacettepe.edu.tr/spring2013/bbm444
Prerequisites

• Good math (calculus, linear algebra, statistics) and programming skills.
• An introductory course in image processing (BBM 413) is highly recommended.
Reference books

http://szeliski.org/Book/
Grading Policy

• BBM 444
  – A set of written assignments (15%)
  – A midterm exam (35%)
  – A final exam (45%)
  – Class participation (5%)

• BBM 446
  – 4 programming assignments
Programming Assignments

• 4 assignments related to the topics covered in the class.

• Each assignment will involve implementing an algorithm, carrying out a set of experiments to evaluate it, and writing up a report on the experimental results.

• All assignments have to be done individually, unless stated otherwise.
Important Dates

• PA 1 15 March 2013
• PA 2 5 April 2013
• PA 3 3 May 2013
• PA 4 24 May 2013

• Midterm exam 26 April 2013

• Final exam To be announced later
Syllabus
Cameras and Image Formation

• Image formation
  – How cameras work?

Slide credit: Rob Fergus
Image Processing
Blending and Compositing

• Gradient domain image manipulation
Image Resizing

Slide credit: Rob Fergus
Warping and Morphing

Image deformation using moving least squares

Schaefer et al. (2006)

Face morphing

Slide credit: Svetlana Lazebnik
Data-driven texture synthesis

• Goal: create new samples of a given texture
• Many applications: virtual environments, hole-filling, texturing surfaces

Super resolution
Panoramas and Collages

Panorama stitching

AutoCollage

Rother et al. (2006)

Multi-viewpoint panoramas

Agarwala et al. (2006)

Slide credit: Svetlana Lazebnik
Denoising

Slide credit: Rob Fergus
Image Completion

Scene Completion using Millions of Photographs
High dynamic range imaging
Tone mapping

• Users often disappointed by BW photos
Tone mapping

- Can you “transfer” some of the low-level qualities?
Tone mapping

Slide credit: Fredo Durand

Output result

Two-scale Tone Management for Photographic Look
Soonmin Bae, Sylvain Paris, Frédo Durand, Siggraph 2006
Photo quality assessment

• What makes a great photo?

*Derrière la gare de Saint-Lazare*,
Cartier-Bresson (1932)
Non-photorealistic rendering

Karacan, L., Erdem, A. and Erdem, E., *work in progress*
Reading Assignment

• Brian Hayes, 
  Computational Photography, American Scientist 96, 94-99, 2008