Linear Classification Models

This week

- Logistic Regression
- Discriminative vs. Generative Classification
- Linear Discriminant Functions
 - Two Classes
 - Multiple Classes
 - Fisher’s Linear Discriminant
- Perceptron

Recap: Naïve Bayes

- NB Assumption: \[P(X_1...X_d|Y) = \prod_{i=1}^{d} P(X_i|Y) \]

- NB Classifier:
 \[f_{NB}(x) = \arg \max_y \prod_{i=1}^{d} P(x_i|y)P(y) \]

- Assume parametric form for P(X_i|Y) and P(Y)
 - Estimate parameters using MLE/MAP and plug in
What if we assume variance is independent of class, i.e.

As an example, consider Gaussian Naïve Bayes:

There are several distributions that can lead to a linear decision boundary.

Gaussian class conditional densities

What if we assume variance is independent of class, i.e. $\sigma_{i,0}^2 = \sigma_{i,1}^2$

Gaussian Naïve Bayes (GNB)

- There are several distributions that can lead to a linear boundary.
- As an example, consider Gaussian Naïve Bayes:

\[
P(X_i | Y = y) = \frac{1}{\sqrt{2\pi\sigma_{i,y}^2}} e^{-\frac{(X_i - \mu_{i,y})^2}{2\sigma_{i,y}^2}}
\]

Gaussian class conditional densities

Generative vs. Discriminative Classifiers

- Generative classifiers (e.g. Naïve Bayes)
 - Assume some functional form for $P(X|Y)$ (or $P(X|Y)$ and $P(Y)$)
 - Estimate parameters of $P(X|Y)$, $P(Y)$ directly from training data
- But arg max$_Y P(X|Y) P(Y) = $ arg max$_Y P(Y|X)$
- Why not learn $P(Y|X)$ directly? Or better yet, why not learn the decision boundary directly?

- Discriminative classifiers (e.g. Logistic Regression)
 - Assume some functional form for $P(Y|X)$ or for the decision boundary
 - Estimate parameters of $P(Y|X)$ directly from training data

Decision boundary:

\[
P(X_i | Y = y) = \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{-\frac{(X_i - \mu_{i,y})^2}{2\sigma_i^2}}
\]

\[
\prod_{i=1}^{d} P(X_i | Y = 0) P(Y = 0) = \prod_{i=1}^{d} P(X_i | Y = 1) P(Y = 1)
\]

\[
\log \frac{P(Y = 1) \prod_{i=1}^{d} P(X_i | Y = 1)}{P(Y = 0) \prod_{i=1}^{d} P(X_i | Y = 0)} = \log \frac{1 - \pi}{\pi} + \sum_{i=1}^{d} \log \frac{P(X_i | Y = 0)}{P(X_i | Y = 1)}
\]

\[
= \log \frac{1 - \pi}{\pi} + \sum_{i} \frac{\mu_{i,0} - \mu_{i,1}}{2\sigma_i^2} X_i =: w_0 + \sum_{i} w_i X_i
\]

Constant term

First-order term
Logistic Regression

Assumes the following functional form for $P(Y|X)$:

$$ P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} $$

Logistic function applied to a linear function of the data

$\text{Logistic function (or Sigmoid): } \frac{1}{1 + \exp(-z)}$

Features can be discrete or continuous!

Logistic Regression is a Linear Classifier!

Assumes the following functional form for $P(Y|X)$:

$$ P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} $$

Decision boundary:

$$ w_0 + \sum_i w_i X_i = 0 $$

(Log Linear Decision Boundary)

Logistic Regression is a Linear Classifier!

Assumes the following functional form for $P(Y|X)$:

$$ P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} $$

$\Rightarrow P(Y = 0|X) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$

$\Rightarrow P(Y = 0|X) = \exp(w_0 + \sum_i w_i X_i) \frac{0}{1} \overset{\text{for } k = K}{\geq} 1$

$\Rightarrow w_0 + \sum_i w_i X_i \overset{\text{for } k = K}{\geq} 0$

Logistic Regression for more than 2 classes

- Logistic regression in more general case, where $Y \in \{y_1, ..., y_K\}$

for $k < K$

$$ P(Y = y_k|X) = \frac{\exp(w_{k0} + \sum_{i=1}^d w_{ki} X_i)}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^d w_{ji} X_i)} $$

for $k = K$ (normalization, so no weights for this class)

$$ P(Y = y_K|X) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^d w_{ji} X_i)} $$
We'll focus on binary classification:

\[
P(Y = 0|X, w) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}
\]

\[
P(Y = 1|X, w) = \frac{\exp(w_0 + \sum_{i=1}^{n} w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}
\]

How to learn the parameters \(w_0, w_1, \ldots w_d\)?

Training Data \(\{(X^{(j)}, Y^{(j)})\}_{j=1}^{n} \quad X^{(j)} = (X^{(j)}_1, \ldots, X^{(j)}_d)\)

Maximum (Conditional) Likelihood Estimates

\[
\hat{w}_{MLE} = \arg\max_{w} \prod_{j=1}^{n} P(X^{(j)}, Y^{(j)} | w)
\]

But there is a problem ...
Don't have a model for \(P(X)\) or \(P(X|Y)\) — only for \(P(Y|X)\)

Expressing Conditional log Likelihood

\[
l(W) = \sum_{l} Y^l \ln P(Y^l = 1|X^l, W) + (1 - Y^l) \ln P(Y^l = 0|X^l, W)
\]

\[
P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}
\]

\[
P(Y = 1|X) = \frac{\exp(w_0 + \sum_{i=1}^{n} w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}
\]

\(Y\) can take only values 0 or 1, so only one of the two terms in the expression will be non-zero for any given \(Y^l\)

How to learn the parameters \(w_0, w_1, \ldots w_d\)?

Training Data \(\{(X^{(j)}, Y^{(j)})\}_{j=1}^{n} \quad X^{(j)} = (X^{(j)}_1, \ldots, X^{(j)}_d)\)

Maximum (Conditional) Likelihood Estimates

\[
\hat{w}_{MLE} = \arg\max_{w} \prod_{j=1}^{n} P(Y^{(j)} | X^{(j)}, w)
\]

Discriminative philosophy — Don’t waste effort learning \(P(X)\), focus on \(P(Y|X)\) — that’s all that matters for classification!
Maximizing Conditional log Likelihood

\[\max_w l(w) = \ln \prod_j P(y^j | x^j, w) \]
\[= \sum_j y^j (w_0 + \sum_i w_i x^j) - \ln (1 + \exp (w_0 + \sum_i w_i x^j)) \]

Bad news: no closed-form solution to maximize \(l(w) \)

Good news: \(l(w) \) is concave function of \(w \) \iff concave functions easy to optimize (unique maximum)

Optimizing concave/convex functions

- Conditional likelihood for Logistic Regression is concave
- Maximum of a concave function = minimum of a convex function

Gradient Ascent (concave)/ Gradient Descent (convex)

Gradient:

\[\nabla_w l(w) = [\frac{\partial l(w)}{\partial w_0}, \ldots, \frac{\partial l(w)}{\partial w_n}] \]

Update rule:

\[
\Delta w = \eta \nabla_w l(w) \\
w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(w)}{\partial w_i} |_t
\]

Gradient Ascent for Logistic Regression

Gradient ascent algorithm: iterate until change < \(\varepsilon \)

\[w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - P(Y^j = 1 | x^j, w^{(t)})] \]

For \(i = 1, \ldots, d \),

\[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - P(Y^j = 1 | x^j, w^{(t)})] \]

repeat

- Gradient ascent is simplest of optimization approaches
 - e.g., Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)

Effect of step-size \(\eta \)

- Large \(\eta \) \implies Fast convergence but larger residual error
 Also possible oscillations

- Small \(\eta \) \implies Slow convergence but small residual error

Gaussian Naïve Bayes vs. Logistic Regression

- Representation equivalence
 - But only in a special case!!! (GNB with class-independent variances)
- But what’s the difference???

Naïve Bayes vs. Logistic Regression

Consider Y boolean, X_i continuous, X=<X_1 ... X_d>

Number of parameters:
- NB: 4d + 1 \(\pi, (\mu_{1,y}, \mu_{2,y}, \ldots, \mu_{d,y}), (\sigma^2_{1,y}, \sigma^2_{2,y}, \ldots, \sigma^2_{d,y}) \) \(y = 0,1 \)
- LR: d+1 \(w_0, w_1, \ldots, w_d \)

Estimation method:
- NB parameter estimates are uncoupled
- LR parameter estimates are coupled

Generative vs. Discriminative

Given infinite data (asymptotically),

If conditional independence assumption holds, Discriminative and generative NB perform similar.
\[\epsilon_{\text{Dis}, \infty} \sim \epsilon_{\text{Gen}, \infty} \]

If conditional independence assumption does NOT holds, Discriminative outperforms generative NB.
\[\epsilon_{\text{Dis}, \infty} < \epsilon_{\text{Gen}, \infty} \]
Generative vs. Discriminative

Given finite data (n data points, d features),

\[\epsilon_{\text{Dis},n} \leq \epsilon_{\text{Dis},\infty} + O\left(\sqrt{\frac{d}{n}}\right) \]

\[\epsilon_{\text{Gen},n} \leq \epsilon_{\text{Gen},\infty} + O\left(\sqrt{\frac{\log d}{n}}\right) \]

Naïve Bayes (generative) requires \(n = O(\log d) \) to converge to its asymptotic error, whereas Logistic regression (discriminative) requires \(n = O(d) \).

Why? “Independent class conditional densities”
* parameter estimates not coupled – each parameter is learnt independently, not jointly, from training data.

Naïve Bayes vs. Logistic Regression

Verdict

Both learn a linear decision boundary.
Naïve Bayes makes more restrictive assumptions and has higher asymptotic error,

BUT
converges faster to its less accurate asymptotic error.

Experimental Comparison (Ng-Jordan’01)

UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features

What you should know

- LR is a linear classifier
 - decision rule is a hyperplane
- LR optimized by maximizing conditional likelihood
 - no closed-form solution
 - concave ! global optimum with gradient ascent
- Gaussian Naïve Bayes with class-independent variances representationally equivalent to LR
 - Solution differs because of objective (loss) function
- In general, NB and LR make different assumptions
 - NB: Features independent given class ! assumption on \(P(X|Y) \)
 - LR: Functional form of \(P(Y|X) \), no assumption on \(P(X|Y) \)
- Convergence rates
 - GNB (usually) needs less data
 - LR (usually) gets to better solutions in the limit
This week

- Logistic Regression
- Discriminative vs. Generative Classification
- Linear Discriminant Functions
 - Two Classes
 - Multiple Classes
 - Fisher’s Linear Discriminant
- Perceptron

Properties of Linear Discriminant Functions

- The decision surface, shown in red, is perpendicular to \(w \), and its displacement from the origin is controlled by the bias parameter \(w_0 \).
- The signed orthogonal distance of a general point \(x \) from the decision surface is given by \(y(x)/\|w\| \).
- \(y(x) \) gives a signed measure of the perpendicular distance \(r \) of the point \(x \) from the decision surface.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y > 0)</th>
<th>(y = 0)</th>
<th>(y < 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(x_2)</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

- \(y(x) = 0 \) for \(x \) on the decision surface. The normal distance from the origin to the decision surface is \(w^T x / \|w\| = w_0 / \|w\| \).
- So \(w_0 \) determines the location of the decision surface.

Linear Discriminant Function

- Linear discriminant function for a vector \(x \)
 \[y(x) = w^T x + w_0 \]
 where \(w \) is called weight vector, and \(w_0 \) is a bias.

- The classification function is
 \[C(x) = \text{sign}(w^T x + w_0) \]
 where step function \(\text{sign}(\cdot) \) is defined as
 \[\text{sign}(a) = \begin{cases}
 +1, & a > 0 \\
 -1, & a < 0
 \end{cases} \]

Properties of Linear Discriminant Functions

- Let
 \[x = x_{\perp} + r \frac{w}{\|w\|} \]
 where \(x_{\perp} \) is the projection \(x \) on the decision surface. Then
 \[w^T x = w^T x_{\perp} + r \frac{w^T w}{\|w\|} \]
 \[w^T x + w_0 = w^T x_{\perp} + w_0 + r \frac{w}{\|w\|} \]
 \[y(x) = r \frac{\|w\|}{\|w\|} \]
 \[r = \frac{y(x)}{\|w\|} \]

- Simpler notion: define \(\tilde{w} = (w_0, w) \) and \(\tilde{x} = (1, x) \) so that
 \[y(x) = \tilde{w}^T \tilde{x} \]
Multiple Classes: Simple Extension

- **One-versus-the-rest** classifier: classify C_k and samples not in C_k.
- **One-versus-one** classifier: classify every pair of classes.

![Diagram showing decision regions for simple extension](image)

Property of the Decision Regions

Theorem

The decision regions of the K-class discriminant $y_k(x) = w_k^T x + w_{k0}$ are singly connected and convex.

Proof.

Suppose two points x_a and x_b both lie inside decision region R_k. Any point \tilde{x} on the line between x_a and x_b can be expressed as

$$\tilde{x} = \lambda x_a + (1 - \lambda) x_b$$

So

$$y_k(\tilde{x}) = \lambda y_k(x_a) + (1 - \lambda) y_k(x_b)$$

$$> \lambda y_j(x_a) + (1 - \lambda) y_j(x_b) \ (\forall j \neq k)$$

$$= y_j(\tilde{x}) \ (\forall j \neq k)$$

Therefore, the regions R_k are single connected and convex.

Multiple Classes: K-Class Discriminant

- A single K-class discriminant comprising K linear functions

$$y_k(x) = w_k^T x + w_{k0}$$

- Decision function

$$C(x) = k, \text{ if } y_k(x) > y_j(x) \ \forall j \neq k$$

- The decision boundary between class C_k and C_j is given by

$$(w_k - w_j)^T x + (w_{k0} - w_{j0}) = 0$$

![Diagram showing decision regions for K-class discriminant](image)

Property of the Decision Regions

Theorem

The decision regions of the K-class discriminant $y_k(x) = w_k^T x + w_{k0}$ are singly connected and convex.

If two points x_a and x_b both lie inside the same decision region R_i, then any point x that lies on the line connecting these two points must also lie in R_i, and hence the decision region must be singly connected and convex.
Fisher’s Linear Discriminant

• Pursue the optimal linear projection on which the two classes can be maximally separated
 \[y = w^T x \]
 A way to view a linear classification model is in terms of dimensionality reduction.

• The mean vectors of the two classes
 \[m_1 = \frac{1}{N_1} \sum_{x \in C_1} x, \quad m_2 = \frac{1}{N_2} \sum_{x \in C_2} x \]

Discriminant Functions – Fisher’s Linear Discriminant

Fisher’s Linear Discriminant

What’s a Good Projection?

• After projection, the two classes are separated as much as possible. Measured by the distance between projected center
 \[(w^T (m_1 - m_2))^2 = w^T (m_1 - m_2)(m_1 - m_2)^T w \]
 \[= w^T S_B w \]
 where \(S_B = (m_1 - m_2)(m_1 - m_2)^T \) is called between-class covariance matrix.

• After projection, the variances of the two classes are as small as possible. Measured by the within-class covariance
 \[w^T S_W w \]
 where
 \[S_W = \sum_{x \in C_1} (x_i - m_1)(x_i - m_1)^T + \sum_{x \in C_2} (x_i - m_2)(x_i - m_2)^T \]

From Fisher’s Linear Discriminant to Classifiers

• Fisher’s Linear Discriminant is not a classifier; it only decides on an optimal projection to convert high-dimensional classification problem to 1D.

• A bias (threshold) is needed to form a linear classifier (multiple thresholds lead to nonlinear classifiers). The final classifier has the form
 \[y(x) = \text{sign}(w^T x + w_0) \]
 where the nonlinear activation function \(\text{sign}(\cdot) \) is a step function
 \[\text{sign}(a) = \begin{cases} +1, & a \geq 0 \\ -1, & a < 0 \end{cases} \]

• How to decide the bias \(w_0 \)?
Theorem

Given a set of labeled samples \(\{x_n, t_n\}_{n=1}^N \) where \(x_n \in \mathbb{R} \) and \(t_n \in \{-1, 1\} \). Without loss of generality, assume that \(x_n \)'s are sorted, namely \(x_n \leq x_{n+1}, \forall n < N \). Define an accumulative function \(F(\cdot) \):

\[
F(x) = \sum_{n=1}^{N} t_n \delta(x_n \leq x)
\]

The optimal classifier (suppose the sign is correct)

\[
y(x) = \text{sign}(x - w_0)
\]

the minimizes the training error

\[
- \sum_{n=1}^{N} y(x_n) t_n
\]

is decided by

\[
w_0 = \arg \max F(x)
\]
Neurons

- Soma (CPU)
 Cell body - combines signals

- Dendrite (input bus)
 Combines the inputs from several other nerve cells

- Synapse (interface)
 Interface and parameter store between neurons

- Axon (cable)
 May be up to 1m long and will transport the activation signal to neurons at different locations

Perceptron

- Weighted linear combination
- Nonlinear decision function
- Linear offset (bias)

- Linear separating hyperplanes (spam/ham, novel/typical, click/no click)
- Learning
 Estimating the parameters w and b

\[f(x) = \sum_{i} w_i x_i = \langle w, x \rangle \]
The Perceptron

initialize \(w = 0 \) and \(b = 0 \)
repeat
if \(y_i [(w, x_i) + b] \leq 0 \) then
 \(w \leftarrow w + y_i x_i \) and \(b \leftarrow b + y_i \)
end if
until all classified correctly

- Nothing happens if classified correctly
- Weight vector is linear combination \(w = \sum y_i x_i \)
- Classifier is linear combination of inner products \(f(x) = \sum_{i \in I} y_i \langle x_i, x \rangle + b \)

Proof

Starting Point
We start from \(w_1 = 0 \) and \(b_1 = 0 \).

Step 1: Bound on the increase of alignment
Denote by \(w_i \) the value of \(w \) at step \(i \) (analogously \(b_i \)).

Alignment: \(\langle (w_i, b_i), (w^*, b^*) \rangle \)

For error in observation \(\langle x_i, y_i \rangle \) we get
\[
\langle (w_{j+1}, b_{j+1}) \cdot (w^*, b^*) \rangle
= \langle [(w_j, b_j) + y_i(x_i, 1)], (w^*, b^*) \rangle
= \langle (w_j, b_j), (w^*, b^*) \rangle + y_i \langle (x_i, 1) \cdot (w^*, b^*) \rangle
\geq \langle (w_j, b_j), (w^*, b^*) \rangle + \rho
\geq J \rho.
\]

Alignment increases with number of errors.

Convergence Theorem

- If there exists some \((w^*, b^*)\) with unit length and \(y_i [(x_i, w^*) + b^*] \geq \rho \) for all \(i \) then the perceptron converges to a linear separator after a number of steps bounded by
\[
(b^2 + 1) (r^2 + 1) \rho^{-2} \text{ where } ||x_i|| \leq r
\]

- Dimensionality independent
- Order independent (i.e. also worst case)
- Scales with ‘difficulty’ of problem

Proof

Step 2: Cauchy-Schwartz for the Dot Product
\[
\langle (w_{j+1}, b_{j+1}) \cdot (w^*, b^*) \rangle \leq \| (w_{j+1}, b_{j+1}) \| \| (w^*, b^*)\| = \sqrt{1 + (b^*)^2} \| (w_{j+1}, b_{j+1}) \|
\]

Step 3: Upper Bound on \(\| (w_j, b_j) \| \)
If we make a mistake we have
\[
\| (w_{j+1}, b_{j+1}) \|^2 = \| (w_j, b_j) \| y_i \| x_i, 1 \|^2
= \| (w_j, b_j) \|^2 + 2 y_i \langle (x_i, 1), (w_j, b_j) \rangle + \| (x_i, 1) \|^2
\leq \| (w_j, b_j) \|^2 + \| (x_i, 1) \|^2
\leq j (R^2 + 1).
\]

Step 4: Combination of first three steps
\[
j \rho \leq \sqrt{1 + (b^*)^2} \| (w_{j+1}, b_{j+1}) \| \leq \sqrt{j (R^2 + 1)(b^*)^2 + 1}
\]
Solving for \(j \) proves the theorem.
Consequences

- Only need to store errors. This gives a compression bound for perceptron.
- Stochastic gradient descent on hinge loss:
 \[l(x_i, y_i, w, b) = \max(0, 1 - y_i [(w, x_i) + b]) \]
- Fails with noisy data

Do NOT train your avatar with perceptrons

Hardness: margin vs. size

Hard

Easy
Concepts & version space

- **Realizable concepts**
 - Some function exists that can separate data and is included in the concept space
 - For perceptron - data is linearly separable
- **Unrealizable concept**
 - Data not separable
 - We don’t have a suitable function class (often hard to distinguish)

Minimum error separation

- XOR - not linearly separable
- Nonlinear separation is trivial
- Caveat (Minsky & Papert)

 Finding the minimum error linear separator is NP hard (this killed Neural Networks in the 70s).
Nonlinear Features

• Regression
 We got nonlinear functions by preprocessing
• Perceptron
 - Map data into feature space \(x \rightarrow \phi(x) \)
 - Solve problem in this space
 - Query replace \((x, x')\) by \((\phi(x), \phi(x'))\) for code
• Feature Perceptron
 - Solution in span of \(\phi(x_i)\)

Constructing Features (very naive OCR system)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loops</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3 Joints</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4 Joints</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Angles</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ink</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Quadratic Features

• Separating surfaces are Circles, hyperbolae, parabolae

Feature Engineering for Spam Filtering

• bag of words
• pairs of words
• date & time
• recipient path
• IP number
• sender
• encoding
• links
• ... secret sauce ...
More feature engineering

• Two Interlocking Spirals
 Transform the data into a radial and angular part
 \((x_1, x_2) = (r \sin \phi, r \cos \phi)\)
• Handwritten Japanese Character Recognition
 - Break down the images into strokes and recognize it
 - Lookup based on stroke order
• Medical Diagnosis
 - Physician’s comments
 - Blood status / ECG / height / weight / temperature ...
 - Medical knowledge
• Preprocessing
 - Zero mean, unit variance to fix scale issue (e.g. weight vs. income)
 - Probability integral transform (inverse CDF) as alternative

The Perceptron on features

initialize \(w, b = 0 \)
repeat
 Pick \((x_i, y_i)\) from data
 if \(y_i (w \cdot \Phi(x_i) + b) \leq 0\) then
 \(w' = w + y_i \Phi(x_i)\)
 \(b' = b + y_i\)
 until \(y_i (w \cdot \Phi(x_i) + b) > 0\) for all \(i\)

• Nothing happens if classified correctly
• Weight vector is linear combination \(w = \sum_{i \in I} y_i \phi(x_i) \)
• Classifier is linear combination of inner products \(f(x) = \sum_{i \in I} y_i \langle \phi(x_i), \phi(x) \rangle + b \)

Problems

• Problems
 - Need domain expert (e.g. Chinese OCR)
 - Often expensive to compute
 - Difficult to transfer engineering knowledge
• Shotgun Solution
 - Compute many features
 - Hope that this contains good ones
 - Do this efficiently

Next week

• Support Vector Machines