Edge detection

Aykut Erdem
Dept. of Computer Engineering
Hacettepe University

Origin of edges

- Edges are caused by a variety of factors:
 - depth discontinuity
 - surface color discontinuity
 - illumination discontinuity
 - surface normal discontinuity

Characterizing edges

- An edge is a place of rapid change in the image intensity function
 - Edges correspond to extrema of derivative
 - **Convert a 2D image into a set of curves**
 - Extracts salient features of the scene
 - More compact than pixels

Slide credit: N. Snavely

Slide credit: S. Seitz

Slide credit: A. Efros
Derivatives with convolution

For 2D function \(f(x,y) \), the partial derivative is:
\[
\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}
\]

For discrete data, we can approximate using finite differences:
\[
\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x + 1,y) - f(x,y)}{1}
\]

To implement above as convolution, what would be the associated filter?

Finite difference filters

- Other approximations of derivative filters exist:

 Prewitt:
 \[
 M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} ; \quad M_y = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}
 \]

 Sobel:
 \[
 M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} ; \quad M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}
 \]

 Roberts:
 \[
 M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} ; \quad M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
 \]

Partial derivatives of an image

Which shows changes with respect to \(x \)?

\[
\frac{\partial f(x,y)}{\partial x} \approx \begin{bmatrix} -1 & 1 \end{bmatrix}
\]

\[
\frac{\partial f(x,y)}{\partial y} \approx \begin{bmatrix} -1 \\ 1 \end{bmatrix}
\]

Image gradient

- The gradient of an image:
 \[
 \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}
 \]

 \[
 \nabla f = \begin{bmatrix} 0, 0 \end{bmatrix}
 \]

 \[
 \nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}
 \]

 \[
 \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}
 \]

The gradient points in the direction of most rapid increase in intensity
- How does this direction relate to the direction of the edge?

The gradient direction is given by
\[
\theta = \tan^{-1} \left(\frac{\partial f / \partial y}{\partial f / \partial x} \right)
\]

The edge strength is given by the gradient magnitude
\[
\| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}
\]
Example: Sobel Operator

Original Magnitude Orientation

Slide credit: A. Farhadi

Effects of noise

• Consider a single row or column of the image
 – Plotting intensity as a function of position gives a signal

\[f(x) \]

Where is the edge?

Solution: smooth first

\[f \]

\[g \]

\[f \ast g \]

\[\frac{d}{dx}(f \ast g) \]

• To find edges, look for peaks in \(\frac{d}{dx}(f \ast g) \)

Slide credit: S. Seitz

Derivative theorem of convolution

• Differentiation is convolution, and convolution is associative:
 \(\frac{d}{dx}(f \ast g) = f \ast \frac{d}{dx}g \)

• This saves us one operation:

\[f \]

\[\frac{d}{dx}g \]

\[f \ast \frac{d}{dx}g \]

Slide credit: S. Seitz
Derivative of Gaussian filter

- Are these filters separable?

Review: Smoothing vs. derivative filters

- Smoothing filters
 - Gaussian: remove “high-frequency” components; “low-pass” filter
 - Can the values of a smoothing filter be negative?
 - What should the values sum to?
 - One: constant regions are not affected by the filter

- Derivative filters
 - Derivatives of Gaussian
 - Can the values of a derivative filter be negative?
 - What should the values sum to?
 - Zero: no response in constant regions
 - High absolute value at points of high contrast

Scale of Gaussian derivative filter

- Smoothed derivative removes noise, but blurs edge. Also finds edges at different “scales”
The Canny edge detector

original image

Slide credit: Steve Seitz

17

norm of the gradient

Slide credit: Steve Seitz

18

thresholding

Slide credit: Steve Seitz

19

How to turn these thick regions of the gradient into curves?

thresholding

Slide credit: Steve Seitz

20
Non-maximum suppression

• Check if pixel is local maximum along gradient direction, select single max across width of the edge – requires checking interpolated pixels p and r

The Canny edge detector

Problem: pixels along this edge didn't survive the thresholding

thinning (non-maximum suppression)

Hysteresis thresholding

• Use a high threshold to start edge curves, and a low threshold to continue them.
Recap: Canny edge detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
 - Thin wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

• MATLAB: `edge(image, 'canny');`

Slide credit: A. Efros