BIL 719 - Computer Vision
Mar 19, 2014

Fitting: RANSAC, Voting and the Hough Transform

Aykut Erdem
Dept. of Computer Engineering
Hacettepe University
Fitting: Motivation

• We’ve learned how to detect edges, corners, blobs. Now what?
• We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model.
Boundaries of Objects

Marked by many users

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/bench/html/images.html

Slide credit: S. Narasimhan
Boundaries of Objects from Edges

Brightness Gradient (Edge detection)

Missing edge continuity, many spurious edges

Slide credit: S. Narasimhan
Boundaries of Objects from Edges

Multi-scale Brightness Gradient

But, low strength edges may be very important

Slide credit: S. Narasimhan
Boundaries of Objects from Edges

Image

Machine Edge Detection

Human Boundary Marking

Slide credit: S. Narasimhan
Preprocessing Edge Images

Image

Edge detection and Thresholding

Noisy edge image
Incomplete boundaries

Shrink and Expand

Thinning
Edge Tracking Methods

• Adjusting a priori boundaries:

 Given: Approximate location of boundary
 Task: Find accurate location of boundary

• Search for STRONG EDGES along normals to approximate boundary.
• Fit curve (e.g., polynomials) to strong edges.

Fig. 4.2 Search orientations from an approximate boundary location.
Edge Tracking Methods

Divide and Conquer:

Given: Boundary lies between points A and B
Task: Find Boundary

- Connect A and B with Line
- Find strongest edge along line bisector
- Use edge point as break point
- Repeat
Fitting lines to edges
Fitting – The main idea

• Choose a parametric model to represent a set of features

simple model: lines

simple model: circles

complicated model: car
Fitting – The main idea

• Choose a parametric model to represent a set of features

• Membership criterion is not local
 – Can’t tell whether a point belongs to a given model just by looking at that point

• Three main questions:
 – What model represents this set of features best?
 – Which of several model instances gets which feature?
 – How many model instances are there?

• Computational complexity is important
 – It is infeasible to examine every possible set of parameters and every possible combination of features

Slide credit: S. Lazebnik
Example: Line fitting

- Why fit lines?
 Many objects characterized by presence of straight lines

- Wait, why aren’t we done just by running edge detection?
Fitting: Issues

Case study: Line detection

- Noise in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions
Fitting: Issues

• If we know which points belong to the line, how do we find the “optimal” line parameters?
 – Least squares

• What if there are outliers?
 – Robust fitting, RANSAC

• What if there are many lines?
 – Voting methods: RANSAC, Hough transform

• What if we’re not even sure it’s a line?
 – Model selection
Least Squares Line Fitting

Data: \((x_1, y_1), \ldots, (x_n, y_n)\)

Line equation: \(y_i = mx_i + b\)

Find \((m, b)\) to minimize

\[
E = \sum_{i=1}^{n} (y_i - mx_i - b)^2
\]

\[
Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad X = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix}, \quad B = \begin{bmatrix} m \\ b \end{bmatrix}
\]

\[
E = \|Y - XB\|^2 = (Y - XB)^T (Y - XB) = Y^T Y - 2(XB)^T Y + (XB)^T (XB)
\]

\[
\frac{dE}{dB} = 2X^T XB - 2X^T Y = 0
\]

\[
X^T XB = X^T Y
\]

Normal equations: Least Squares solution to \(XB = Y\)
Problem with “vertical” least squares

• Not rotation-invariant
• Fails completely for vertical lines
Total Least Squares

Distance between point \((x_i, y_i)\) and line \(ax + by = d\) \((a^2 + b^2 = 1)\): \(|ax_i + by_i - d|\)

Unit normal: \(N = (a, b)\)

Slide credit: S. Lazebnik
Total Least Squares

Distance between point \((x_i, y_i)\) and line \(ax + by = d\) \((a^2 + b^2 = 1)\): \(\left|ax_i + by_i - d\right|\)

Find \((a, b, d)\) to minimize the sum of squared perpendicular distances

\[
E = \sum_{i=1}^{n} (ax_i + by_i - d)^2
\]

Unit normal: \(N = (a, b)\)

Slide credit: S. Lazebnik
Total Least Squares

Distance between point \((x_i, y_i)\) and line \(ax + by = d\) \((a^2 + b^2 = 1)\): \(|ax_i + by_i - d|\)

Find \((a, b, d)\) to minimize the sum of squared perpendicular distances

\[
E = \sum_{i=1}^{n} (ax_i + by_i - d)^2
\]

\[
\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0
\]

\[
E = \sum_{i=1}^{n} (a(x_i - \bar{x}) + b(y_i - \bar{y}))^2 = \left\| \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \right\|^2 = (UN)^T (UN)
\]

\[
\frac{dE}{dN} = 2(U^T U)N = 0
\]

Solution to \((U^T U)N = 0\), subject to \(\|N\|^2 = 1\): eigenvector of \(U^T U\) associated with the smallest eigenvalue (least squares solution to homogeneous linear system \(UN = 0\))
Total Least Squares

\[
U = \begin{bmatrix}
 x_1 - \bar{x} & y_1 - \bar{y} \\
 \vdots & \vdots \\
 x_n - \bar{x} & y_n - \bar{y}
\end{bmatrix} \quad U^T U = \begin{bmatrix}
 \sum_{i=1}^{n} (x_i - \bar{x})^2 & \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \\
 \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) & \sum_{i=1}^{n} (y_i - \bar{y})^2
\end{bmatrix}
\]

second moment matrix

Slide credit: S. Lazebnik
Total Least Squares

\[
U = \begin{bmatrix}
x_1 - \bar{x} & y_1 - \bar{y} \\
\vdots & \vdots \\
x_n - \bar{x} & y_n - \bar{y}
\end{bmatrix}
\]

\[
U^T U = \begin{bmatrix}
\sum_{i=1}^{n} (x_i - \bar{x})^2 & \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \\
\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) & \sum_{i=1}^{n} (y_i - \bar{y})^2
\end{bmatrix}
\]

second moment matrix
Least squares as likelihood maximization

- **Generative model**: line points are sampled independently and corrupted by Gaussian noise in the direction perpendicular to the line.

\[
\begin{pmatrix}
 x \\
 y
\end{pmatrix} = \begin{pmatrix}
 u \\
 v
\end{pmatrix} + \varepsilon \begin{pmatrix}
 a \\
 b
\end{pmatrix}
\]

- **Point on the line**: sampled from zero-mean Gaussian with std. dev. \(\sigma \)
- **Normal direction**: noise: sampled from zero-mean Gaussian with std. dev. \(\sigma \)

Slide credit: S. Lazebnik
Least squares as likelihood maximization

- **Generative model**: line points are sampled independently and corrupted by Gaussian noise in the direction perpendicular to the line

\[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix} + \varepsilon \begin{pmatrix} a \\ b \end{pmatrix}
\]

Likelihood of points given line parameters \((a, b, d)\):

\[
P(x_1, y_1, \ldots, x_n, y_n \mid a, b, d) = \prod_{i=1}^{n} P(x_i, y_i \mid a, b, d) \propto \prod_{i=1}^{n} \exp\left(-\frac{(ax_i + by_i - d)^2}{2\sigma^2}\right)
\]

Log-likelihood:

\[
L(x_1, y_1, \ldots, x_n, y_n \mid a, b, d) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (ax_i + by_i - d)^2
\]
Least squares: Robustness to noise

- Least squares fit to the red points:
Least squares: Robustness to noise

- Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Slide credit: S. Lazebnik
Robust estimators

• General approach: find model parameters θ that minimize

$$\sum_i \rho \left(r_i (x_i, \theta); \sigma \right)$$

$r_i (x_i, \theta)$ – residual of ith point w.r.t. model parameters θ

ρ – robust function with scale parameter σ

The robust function ρ behaves like squared distance for small values of the residual u but saturates for larger values of u
Choosing the scale: Just right

The effect of the outlier is minimized!

Slide credit: S. Lazebnik
Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor.
Choosing the scale: Too large

Behaves much the same as least squares
Robust estimation: Details

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Least squares solution can be used for initialization
- Adaptive choice of scale: approx. 1.5 times median residual
RANSAC

- Robust fitting can deal with a few outliers
 - what if we have very many?
- Random sample consensus (RANSAC): Very general framework for model fitting in the presence of outliers
- Outline
 - Choose a small subset of points uniformly at random
 - Fit a model to that subset
 - Find all remaining points that are “close” to the model and reject the rest as outliers
 - Do this many times and choose the best model
RANSAC for line fitting example
RANSAC for line fitting example

Least-squares fit
RANSAC for line fitting example

1. Randomly select minimal subset of points
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model

Slide credit: R. Raguram
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function

Slide credit: R. Raguram
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model

Slide credit: R. Raguram
1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat hypothesize-and-verify loop

Slide credit: R. Raguram
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat hypothesize-and-verify loop

Slide credit: R. Raguram
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat hypothesize-and-verify loop

Uncontaminated sample

Slide credit: R. Raguram
RANSAC for line fitting example

1. Randomly select minimal subset of points
2. Hypothesize a model
3. Compute error function
4. Select points consistent with model
5. Repeat hypothesize-and-verify loop

Slide credit: R. Raguram
RANSAC for line fitting

• Repeat N times:
• Draw s points uniformly at random
• Fit line to these s points
• Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
• If there are d or more inliers, accept the line and refit using all inliers
Choosing the parameters

• Initial number of points s
 – Typically minimum number needed to fit the model

• Distance threshold t
 – Choose t so probability for inlier is p (e.g. 0.95)
 – Zero-mean Gaussian noise with std. dev. σ: $t^2 = 3.84 \sigma^2$

• Number of samples N
 – Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)
Choosing the parameters

- **Initial number of points** s
 - Typically minimum number needed to fit the model

- **Distance threshold** t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. $\sigma : t^2 = 3.84 \sigma^2$

- **Number of samples** N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

\[
\left(1 - \left(1 - e\right)^s\right)^N = 1 - p
\]

\[
N = \log(1 - p) / \log\left(1 - \left(1 - e\right)^s\right)
\]

<table>
<thead>
<tr>
<th>s</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>34</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>26</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>37</td>
<td>97</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>33</td>
<td>54</td>
<td>163</td>
<td>588</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>44</td>
<td>78</td>
<td>272</td>
<td>1177</td>
</tr>
</tbody>
</table>

e : prob. that any selected data point is an inlier

$1 - e$: prob. of observing an outlier
Choosing the parameters

- **Initial number of points** s
 - Typically minimum number needed to fit the model
- **Distance threshold** t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: $t^2 = 3.84 \sigma^2$
- **Number of samples** N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

\[
\left(1 - \left(1 - e\right)^s\right)^N = 1 - p
\]

\[
N = \log(1 - p) / \log\left(1 - \left(1 - e\right)^s\right)
\]

e: prob. that any selected data point is an inlier

$1 - e$: prob. of observing an outlier

Slide credit: M. Pollefeys
Choosing the parameters

• Initial number of points s
 – Typically minimum number needed to fit the model

• Distance threshold t
 – Choose t so probability for inlier is p (e.g. 0.95)
 – Zero-mean Gaussian noise with std. dev. $\sigma: t^2 = 3.84 \sigma^2$

• Number of samples N
 – Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

• Consensus set size d
 – Should match expected inlier ratio
Adaptively determining the number of samples

- Inlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield e=0.2
- Adaptive procedure:
 - \(N = \infty, \ sample_count = 0 \)
 - While \(N > sample_count \)
 - Choose a sample and count the number of inliers
 - Set \(e = 1 - (\text{number of inliers})/(\text{total number of points}) \)
 - Recompute \(N \) from \(e \):
 \[
 N = \frac{\log(1 - p) / \log(1 - (1 - e)^x)}
 \]
 - Increment the \(sample_count \) by 1

Slide credit: M. Pollefeys
RANSAC pros and cons

• Pros
 – Simple and general
 – Applicable to many different problems
 – Often works well in practice

• Cons
 – Lots of parameters to tune
 – Doesn’t work well for low inlier ratios (too many iterations, or can fail completely)
 – Can’t always get a good initialization of the model based on the minimum number of samples
A look into the past

Slide credit: S. Lazebnik
A look into the past

- Leningrad during the blockade

http://komen-dant.livejournal.com/345684.html
Bing streetside images

Slide credit: S. Lazebnik
Image alignment: Applications

Panorama stitching

Recognition of object instances

Slide credit: S. Lazebnik
Image alignment: Challenges

Small degree of overlap
Intensity changes

Occlusion, clutter

Slide credit: S. Lazebnik
Two broad approaches:
- Direct (pixel-based) alignment
 - Search for alignment where most pixels agree
- Feature-based alignment
 - Search for alignment where extracted features agree
 - Can be verified using pixel-based alignment
Alignment as fitting

Alignment: fitting a model to a transformation between pairs of features (matches) in two images

Find model M that minimizes

$$\sum_i \text{residual}(x_i, M)$$

Find transformation T that minimizes

$$\sum_i \text{residual}(T(x_i), x'_i)$$
2D transformation models

- Similarity (translation, scale, rotation)
- Affine
- Projective (homography)

Slide credit: S. Lazebnik
Let’s start with affine transformations

- Simple fitting procedure (linear least squares)
- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
- Can be used to initialize fitting for more complex models
Fitting an affine transformation

- Assume we know the correspondences, how do we get the transformation?

\[
\begin{bmatrix}
x_i' \\
y_i'
\end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\
y_i
\end{bmatrix} + \begin{bmatrix} t_1 \\
t_2
\end{bmatrix}
\]

\[
\begin{bmatrix}
x_i' \\
y_i'
\end{bmatrix} = \begin{bmatrix} m_1 & m_2 & 0 & 0 & 1 & 0 \\
m_3 & m_4 & 0 & 0 & x_i & y_i \\
0 & 0 & m_1 & m_2 & t_1 & t_2 \\
\end{bmatrix} \begin{bmatrix} x_i \\
y_i \\
\ldots
\end{bmatrix}
\]

Slide credit: S. Lazebnik
Fitting an affine transformation

\[
\begin{pmatrix}
 x_i & y_i & 0 & 0 & 1 & 0 \\
 0 & 0 & x_i & y_i & 0 & 1 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{pmatrix}
\begin{bmatrix}
 m_1 \\
 m_2 \\
 m_3 \\
 m_4 \\
 t_1 \\
 t_2 \\
\end{bmatrix}
= \begin{bmatrix}
 x'_i \\
 y'_i \\
 \vdots \\
\end{bmatrix}
\]

- Linear system with six unknowns
- Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters

Slide credit: S. Lazebnik
Beyond affine transformations

• **Homography**: plane projective transformation (transformation taking a quad to another arbitrary quad)

Slide credit: S. Lazebnik
Recap: RANSAC

• An example of a “voting”-based fitting scheme
• Each hypothesis gets voted on by each data point, best hypothesis wins

• There are many other types of voting schemes
 - e.g., Hough transforms...
Voting schemes

• It’s not feasible to check all combinations of features by fitting a model to each possible subset.

• **Voting** is a general technique where we let the features vote for all models that are compatible with it.

 – Cycle through features, cast votes for model parameters.
 – Look for model parameters that receive a lot of votes.

• Noise & clutter features will cast votes too, but typically their votes should be inconsistent with the majority of “good” features.
Fitting lines: Hough transform

- Given points that belong to a line, what is the line?
- How many lines are there?
- Which points belong to which lines?

- **Hough Transform** is a voting technique that can be used to answer all of these questions.

Main idea:
1. Record vote for each possible line on which each edge point lies.
2. Look for lines that get many votes.
Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces

– A line in the image corresponds to a point in Hough space
– To go from image space to Hough space:
 • given a set of points (x,y), find all (m,b) such that \(y = mx + b \)
Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that \(y = mx + b \)
- What does a point \((x_0, y_0) \) in the image space map to?
 - Answer: the solutions of \(b = -x_0m + y_0 \)
 - this is a line in Hough space
Finding lines in an image: Hough space

What are the line parameters for the line that contains both \((x_0, y_0)\) and \((x_1, y_1)\)?

- It is the intersection of the lines \(b = -x_0m + y_0\) and \(b = -x_1m + y_1\)
Finding lines in an image: Hough algorithm

How can we use this to find the most likely parameters \((m,b)\) for the most prominent line in the image space?

- Let each edge point in image space vote for a set of possible parameters in Hough space.
- Accumulate votes in discrete set of bins; parameters with the most votes indicate line in image space.
Polar representation for lines

Issues with usual (m,b) parameter space: can take on infinite values, undefined for vertical lines.

θ: angle the perpendicular makes with the x-axis

d: perpendicular distance from line to origin

$x \cos \theta - y \sin \theta = d$

Point in image space \rightarrow sinusoid segment in Hough space

Slide credit: K. Grauman
Hough transform algorithm

Using the polar parameterization:

\[x \cos \theta - y \sin \theta = d \]

Basic Hough transform algorithm

1. Initialize \(H[d, \theta] = 0 \)

2. For each edge point \(I[x, y] \) in the image

 For \(\theta = [\theta_{\min} \text{ to } \theta_{\max}] \) // some quantization

 \[d = x \cos \theta - y \sin \theta \]

 \(H[d, \theta] += 1 \)

3. Find the value(s) of \((d, \theta) \) where \(H[d, \theta] \) is maximum

4. The detected line in the image is given by \(d = x \cos \theta - y \sin \theta \)
Original

Edge Detection

Found Lines

Parameter Space

Slide credit: S. Narasimhan
Showing longest segments found

Slide credit: K. Grauman
Effect of noise

- Peak gets fuzzy and hard to locate

Slide credit: S. Lazebnik
Effect of noise

- Number of votes for a line of 20 points with increasing noise:

![Graph showing the effect of noise on the number of votes.](image)
Random points

Uniform noise can lead to spurious peaks in the array

Slide credit: S. Lazebnik
Random points

- As the level of uniform noise increases, the maximum number of votes increases too:
Dealing with noise

• Choose a good grid / discretization
 – Too coarse: large votes obtained when too many different lines correspond to a single bucket
 – Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets

• Increment neighboring bins (smoothing in accumulator array)

• Try to get rid of irrelevant features
 – Take only edge points with significant gradient magnitude
Incorporating image gradients

• Recall: when we detect an edge point, we also know its gradient direction

• But this means that the line is uniquely determined!

• Modified Hough transform:

For each edge point \((x,y)\)

\[\theta = \text{gradient orientation at } (x,y) \]

\[\varrho = x \cos \theta + y \sin \theta \]

\[H(\theta, \varrho) = H(\theta, \varrho) + 1 \]

end
Hough transform for circles

- Circle: center \((a,b)\) and radius \(r\)

\[
(x_i - a)^2 + (y_i - b)^2 = r^2
\]

- For a fixed radius \(r\), unknown gradient direction

![Image space and Hough space diagram](Slide credit: K. Grauman)
Hough transform for circles

- Circle: center \((a,b)\) and radius \(r\)

\[(x_i - a)^2 + (y_i - b)^2 = r^2\]

- For a fixed radius \(r\), unknown gradient direction

Intersection: most votes for center occur here.

Slide credit: K. Grauman
Hough transform for circles

- Circle: center \((a, b)\) and radius \(r\)
 \[
 (x_i - a)^2 + (y_i - b)^2 = r^2
 \]
- For an unknown radius \(r\), unknown gradient direction
Hough transform for circles

- Circle: center \((a, b)\) and radius \(r\)
 \[
 (x_i - a)^2 + (y_i - b)^2 = r^2
 \]

- For an unknown radius \(r\), unknown gradient direction
Hough transform for circles

- Circle: center \((a, b)\) and radius \(r\)
 \[(x_i - a)^2 + (y_i - b)^2 = r^2\]

- For an unknown radius \(r\), **known** gradient direction
Hough transform for circles

For every edge pixel \((x,y)\) :

For each possible radius value \(r\):

For each possible gradient direction \(\theta\):

// or use estimated gradient at \((x,y)\)

\[a = x - r \cos(\theta) \] // column

\[b = y + r \sin(\theta) \] // row

\[H[a,b,r] += 1 \]

end

end

Time complexity per edgel?

• Check out online demo: http://www.markschulze.net/java/hough/
Example: detecting circles with Hough

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).
Example: detecting circles with Hough

Original

Edges

Votes: Quarter

Coin finding sample images from: Vivek Kwatra

Slide credit: K. Grauman
Application: iris detection

- Gradient+threshold
- Hough space (fixed radius)
- Max detections

Hemerson Pistori and Eduardo Rocha Costa

Slide credit: K. Grauman
Application: iris detection

Hough circles vs. Laplacian blobs

F. Jurie and C. Schmid, Scale-invariant shape features for recognition of object categories, CVPR 2004

Robustness to scale and clutter
Hough transform: pros and cons

Pros

- All points are processed independently, so can cope with occlusion, gaps
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin
- Can detect multiple instances of a model in a single pass

Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- Quantization: can be tricky to pick a good grid size
Generalized Hough transform

- We want to find a template defined by its reference point (center) and several distinct types of landmark points in stable spatial configuration.

Template
Generalized Hough transform

- Template representation: for each type of landmark point, store all possible displacement vectors towards the center
Generalized Hough transform

- Detecting the template:
 - For each feature in a new image, look up that feature type in the model and vote for the possible center locations associated with that type in the model.

Slide credit: S. Lazebnik
Application in recognition

- Instead of indexing displacements by gradient orientation, index by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, *Combined Object Categorization and Segmentation with an Implicit Shape Model*, ECCV Workshop on Statistical Learning in Computer Vision 2004

Slide credit: S. Lazebnik
Application in recognition

• Instead of indexing displacements by gradient orientation, index by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004
Implicit shape models: Training

1. Build codebook of patches around extracted interest points using clustering (more on this later)
Implicit shape models: Training

1. Build codebook of patches around extracted interest points using clustering

2. Map the patch around each interest point to closest codebook entry
Implicit shape models: Training

1. Build codebook of patches around extracted interest points using clustering
2. Map the patch around each interest point to closest codebook entry
3. For each codebook entry, store all positions it was found, relative to object center
Implicit shape models: Testing

1. Given test image, extract patches, match to codebook entry
2. Cast votes for possible positions of object center
3. Search for maxima in voting space
4. Extract weighted segmentation mask based on stored masks for the codebook occurrences
Implicit shape models: Details

• Supervised training
 – Need reference location and segmentation mask for each training car

• Voting space is continuous, not discrete
 – Clustering algorithm needed to find maxima

• How about dealing with scale changes?
 – Option 1: search a range of scales, as in Hough transform for circles
 – Option 2: use scale-covariant interest points

• Verification stage is very important
 – Once we have a location hypothesis, we can overlay a more detailed template over the image and compare pixel-by-pixel, transfer segmentation masks, etc.