Generic object recognition, classifiers, detection with sliding windows

Aykut Erdem
Dept. of Computer Engineering
Hacettepe University
Outline

• **Generic object recognition**
• **Classifiers**
• **Object category detection**
• **Sliding-windows based models**
Instance-level recognition problem

John’s car

Slide credit: K. Grauman
Generic categorization problem
Visual categorization

- Given a small number of training images of a category, recognize a-priori unknown instances of that category and assign the correct category label.
- Many different ways to categorize

Slide credit: D. Hoiem, R. Guo
Training phase

Training Images

Training

Image Features

Training Labels

Classifier Training

Trained Classifier

Slide credit: D. Hoiem, R. Guo
Testing phase

Training

Training Images

Training Labels

Image Features

Classifier Training

Trained Classifier

Testing

Test Image

Image Features

Trained Classifier

Prediction

Outdoor

Slide credit: D. Hoiem, R. Guo
Part I: Image features

- Training Images
- Training Labels
- Image Features
- Classifier Training
- Trained Classifier

Slide credit: D. Hoiem, R. Guo
Choice of representation

Window-based

Part-based

Slide credit: K. Grauman
Right features depend on what you want to know

- **Object**: 2D shape
 - Local shape info, shading, shadows, texture
- **Scene**: overall layout
 - Linear perspective, gradients
- **Material properties**: albedo, feel, hardness, ...
 - Color, texture
- **Motion**
 - Optical flow, tracked points
General Principles of Representation

• Coverage
 – Ensure that all relevant info is captured

• Concision
 – Minimize number of features without sacrificing coverage

• Directness
 – Ideal features are independently useful for prediction
Image representations

- Templates
 - Intensity, gradients, etc.

- Histograms
 - Color, texture, SIFT descriptors, etc.

- Average of features
Image Representations: Histograms

Global histogram

- Represent distribution of features
 - Color, texture, depth, ...

Images from Dave Kauchak

Slide credit: D. Hoiem, R. Guo
Image Representations: Histograms

Histogram: Probability or count of data in each bin

- Joint histogram
 - Requires lots of data
 - Loss of resolution to avoid empty bins

- Marginal histogram
 - Requires independent features
 - More data/bin than joint histogram

Images from Dave Kauchak

Slide credit: D. Hoiem, R. Guo
Image Representations: Histograms

Clustering

Use the same cluster centers for all images
Computing histogram distance

\[
\text{histint}(h_i, h_j) = 1 - \sum_{m=1}^{K} \min(h_i(m), h_j(m))
\]

Histogram intersection (assuming normalized histograms)

\[
\chi^2(h_i, h_j) = \frac{1}{2} \sum_{m=1}^{K} \frac{[h_i(m) - h_j(m)]^2}{h_i(m) + h_j(m)}
\]

Chi-squared Histogram matching distance

Cars found by color histogram matching using chi-squared

Slide credit: D. Hoiem, R. Guo
Histograms: Implementation issues

• Quantization
 – Grids: fast but applicable only with few dimensions
 – Clustering: slower but can quantize data in higher dimensions

Few Bins
Need less data
Coarser representation

Many Bins
Need more data
Finer representation

• Matching
 – Histogram intersection or Euclidean may be faster
 – Chi-squared often works better
 – Earth mover’s distance is good for when nearby bins represent similar values

Slide credit: D. Hoiem, R. Guo
What kind of things do we compute histograms of?

• Color

- L*a*b* color space
- HSV color space

• Texture (filter banks or HOG over regions)
What kind of things do we compute histograms of?

• Histograms of descriptors

“Bag of words”

SIFT – Lowe IJCV 2004
Bag of visual words

- Image patches
- Bow histogram
- Codewords

Slide credit: D. Hoiem, R. Guo
But what about layout?

All of these images have the same color histogram
Spatial pyramid

Compute histogram in each spatial bin

Slide credit: D. Hoiem, R. Guo
Spatial pyramid

High number of features – PCA to reduce dimensionality

Slide credit: D. Hoiem, R. Guo
Image Categorization: Bag of Words

Training
1. Extract keypoints and descriptors for all training images
2. Cluster descriptors
3. Quantize descriptors using cluster centers to get “visual words”
4. Represent each image by normalized counts of “visual words”
5. Train classifier on labeled examples using histogram values as features

Testing
1. Extract keypoints/descriptors and quantize into visual words
2. Compute visual word histogram
3. Compute label or confidence using classifier

Slide credit: D. Hoiem, R. Guo
Often used features

• Scene: GIST, Spatial pyramid BoW, color

• Object: Spatial pyramid BoW, HOG, color

• Material: texture, color
Things to remember about representation

- Most features can be thought of as templates, histograms (counts), or combinations

- Think about the right features for the problem
 - Coverage
 - Concision
 - Directness
Outline

• Generic object recognition
• Classifiers
• Object category detection
• Sliding-windows based models
Classifiers

Training Images

Image Features

Classifier Training

Trained Classifier

Training Labels

Slide credit: D. Hoiem, R. Guo
A classifier maps from the feature space to a label.
Different types of classification

- **Exemplar-based**: transfer category labels from examples with most similar features
 - What similarity function? What parameters?

- **Linear classifier**: confidence in positive label is a weighted sum of features
 - What are the weights?

- **Non-linear classifier**: predictions based on more complex function of features
 - What form does the classifier take? Parameters?

- **Generative classifier**: assign to the label that best explains the features (makes features most likely)
 - What is the probability function and its parameters?

Note: You can always fully design the classifier by hand, but usually this is too difficult. Typical solution: learn from training examples.
Many classifiers to choose from

- SVM
- Neural networks
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- K-nearest neighbor
- RBMs
- Etc.

Which is the best one?

Slide credit: D. Hoiem
Recognition task and supervision

- Images in the training set must be annotated with the “correct answer” that the model is expected to produce.

Contains a motorbike
Spectrum of supervision

Unsupervised “Weakly” supervised Fully supervised

Definition depends on task

Slide credit: L. Lazebnik
Generalization

- How well does a learned model generalize from the data it was trained on to a new test set?
Generalization

• Components of generalization error
 – **Bias**: How much the average model over all training sets differ from the true model?
 • Error due to inaccurate assumptions/simplifications made by the model
 – **Variance**: How much models estimated from different training sets differ from each other

• **Underfitting**: model is too “simple” to represent all the relevant class characteristics
 – High bias and low variance
 – High training error and high test error

• **Overfitting**: model is too “complex” and fits irrelevant characteristics (noise) in the data
 – Low bias and high variance
 – Low training error and high test error

Slide credit: L. Lazebnik
Bias-Variance Trade-off

- Models with too few parameters are inaccurate because of a large bias (not enough flexibility).

- Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample).
Bias-Variance Trade-off

\[E(MSE) = \text{noise}^2 + \text{bias}^2 + \text{variance} \]

- Unavoidable error
- Error due to incorrect assumptions
- Error due to variance of training samples

See the following for explanations of bias-variance (also Bishop’s “Neural Networks” book):
- http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Slide credit: L. Lazebnik
Remember...

- No classifier is inherently better than any other: you need to make assumptions to generalize

- Three kinds of error
 - Inherent: unavoidable
 - Bias: due to over-simplifications
 - Variance: due to inability to perfectly estimate parameters from limited data
Very brief tour of some classifiers

- SVM
- Neural networks
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- K-nearest neighbor
- RBMs
- etc.
Generative vs. Discriminative Classifiers

Generative Models
- Represent both the data and the labels
- Often, makes use of conditional independence and priors
- Examples
 - Naïve Bayes classifier
 - Bayesian network
- Models of data may apply to future prediction problems

Discriminative Models
- Learn to directly predict the labels from the data
- Often, assume a simple boundary (e.g., linear)
- Examples
 - Logistic regression
 - SVM
 - Boosted decision trees
- Often easier to predict a label from the data than to model the data

Slide credit: D. Hoiem
K-nearest neighbor classifier
1-nearest neighbor

Slide credit: D. Hoiem
3-nearest neighbor
5-nearest neighbor
K-nearest neighbor

Slide credit: D. Hoiem
Nearest neighbors: pros and cons

• **Pros:**
 – Simple to implement
 – Flexible to feature / distance choices
 – Naturally handles multi-class cases
 – Can do well in practice with enough representative data

• **Cons:**
 – Large search problem to find nearest neighbors
 – Storage of data
 – Must know we have a meaningful distance function

Slide credit: K. Grauman
Where in the World?

A nearest neighbor recognition example

Where in the World?

Slide credit: J. Hays
6+ million geotagged photos
by 109,788 photographers

Annotated by Flickr users
6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users

Slide credit: J. Hays
Which scene properties are relevant?
Spatial Envelope Theory of Scene Representation
Oliva & Torralba (2001)

A scene is a single surface that can be represented by global (statistical) descriptors

Slide credit: A. Olivia
Global texture: capturing the “Gist” of the scene

Capture global image properties while keeping some spatial information.

Oliva & Torralba IJCV 2001, Torralba et al. CVPR 2003
Which scene properties are relevant?

- Gist scene descriptor
- Color Histograms - $L^*A^*B^*$ 4x14x14 histograms
- Texton Histograms - 512 entry, filter bank based
- Line Features - Histograms of straight line stats
Scene Matches
Scene Matches
The Importance of Data

![Graph showing the percentage of geolocations within 200km. The x-axis represents the database size (in thousands of images, log scale) and the y-axis represents the percentage of geolocations. Two lines are shown: one for the first nearest neighbor scene match and another for chance-random scenes. The graph illustrates a significant increase in geolocations as the database size increases.]
Feature Performance

![Graph showing performance of different features in estimating geolocation.](image-url)
Support Vector Machines (SVMs)

- Discriminative classifier based on optimal separating line (for 2d case)
- Maximize the margin between the positive and negative training examples
Linear classifier

Finding the linear hyperplane that separates examples of different categories

\[f(x) = w^T x + b \]
Linear Separators

- Which of the linear separators is optimal?
Classification Margin

- Distance from example x_i to the separator is $r = \frac{w^T x_i + b}{\|w\|}$
- Examples closest to the hyperplane are support vectors.
- **Margin** ρ of the separator is the distance between support vectors.

Slide credit: D. Hoiem, R. Guo
Maximum Margin Classification

- Implies that only support vectors matter; other training examples are ignorable.
Linear SVM Mathematically

• Let training set \(\{ (x_i, y_i) \}_{i=1..n} \), \(x_i \in \mathbb{R}^d \), \(y_i \in \{-1, 1\} \) be separated by a hyperplane with margin \(\rho \). Then for each training example \((x_i, y_i) \):
 \[
 w^T x_i + b \leq -\rho/2 \quad \text{if } y_i = -1 \\
 w^T x_i + b \geq \rho/2 \quad \text{if } y_i = 1
 \]

 \(\iff \) \(y_i (w^T x_i + b) \geq \rho/2 \)

• For every support vector \(x_s \) the above inequality is an equality. After rescaling \(w \) and \(b \) by \(\rho/2 \) in the equality, we obtain that distance between each \(x_s \) and the hyperplane is
 \[
 r = \frac{y_s (w^T x_s + b)}{\|w\|} = \frac{1}{\|w\|}
 \]

• Then the margin can be expressed through (rescaled) \(w \) and \(b \) as:
 \[
 \rho = 2r = \frac{2}{\|w\|}
 \]
Solving the Optimization Problem

Quadratic programming with linear constraints

Lagrangian Function

$$\min \frac{1}{2} \|w\|^2$$

s.t. $$y_i(w^T x_i + b) \geq 1$$

$$\min L_p(w, b, \alpha_i) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i \left(y_i(w^T x_i + b) - 1 \right)$$

s.t. $$\alpha_i \geq 0$$

Slide credit: D. Hoiem, R. Guo
Solving the Optimization Problem

\[
\begin{align*}
\text{minimize} & \quad L_p(w, b, \alpha_i) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i \left(y_i (w^T x_i + b) - 1 \right) \\
\text{s.t.} & \quad \alpha_i \geq 0
\end{align*}
\]

\[
\frac{\partial L_p}{\partial w} = 0 \quad \Rightarrow \quad w = \sum_{i=1}^{n} \alpha_i y_i x_i
\]

\[
\frac{\partial L_p}{\partial b} = 0 \quad \Rightarrow \quad \sum_{i=1}^{n} \alpha_i y_i = 0
\]
Solving the Optimization Problem

minimize \(L_p(w, b, \alpha_i) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i \left(y_i (w^T x_i + b) - 1 \right) \)

s.t. \(\alpha_i \geq 0 \)

Lagrangian Dual Problem

maximize \(\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j \)

s.t. \(\alpha_i \geq 0 \), and \(\sum_{i=1}^{n} \alpha_i y_i = 0 \)

Slide credit: D. Hoiem, R. Guo
Soft Margin Classification

• What if the training set is not linearly separable?
• *Slack variables* ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called soft.

Slide credit: D. Hoiem, R. Guo
Large Margin Linear Classifier

- Formulation:

\[
\text{minimize} \quad \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^{n} \xi_i
\]

such that

\[
y_i (\mathbf{w}^T \mathbf{x}_i + b) \geq 1 - \xi_i
\]

\[
\xi_i \geq 0
\]

- Parameter C is a trade off factor

Slide credit: D. Hoiem, R. Guo
Formulation: (Lagrangian Dual Problem)

\[
\text{maximize} \quad \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \\
\text{such that} \quad 0 \leq \alpha_i \leq C \\
\sum_{i=1}^{n} \alpha_i y_i = 0
\]
Linear SVMs: Recap

• The classifier is a *separating hyperplane*.

• Most “important” training points are support vectors; they define the hyperplane.

• Quadratic optimization algorithms can identify which training points x_i are support vectors with non-zero Lagrangian multipliers α_i.

What if the data is not linearly separable?

General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:
Nonlinear SVMs

• **The kernel trick:** instead of explicitly computing the lifting transformation $\varphi(x)$, define a kernel function K such that

$$K(x_i, x_j) = \varphi(x_i) \cdot \varphi(x_j)$$

• This gives a nonlinear decision boundary in the original feature space:

$$\sum_i \alpha_i y_i K(x_i, x) + b$$
Examples of kernel functions

- **Linear:** \(K(x_i, x_j) = x_i^T x_j \)

- **Gaussian RBF:** \(K(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right) \)

- **Histogram intersection:** \(K(x_i, x_j) = \sum_k \min(x_i(k), x_j(k)) \)
Using SVMs

• Good general purpose classifier
 – Generalization depends on margin, so works well with many weak features
 – No feature selection
 – Usually requires some parameter tuning

• Choosing kernel
 – Linear: fast training/testing – start here
 – RBF: related to neural networks, nearest neighbor
 – Chi-squared, histogram intersection: good for histograms (but slower, esp. chi-squared)
 – Can learn a kernel function

Slide credit: D. Hoiem
Multi-class SVMs

• Achieve multi-class classifier by combining a number of binary classifiers

• **One vs. all**
 – Training: learn an SVM for each class vs. the rest
 – Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

• **One vs. one**
 – Training: learn an SVM for each pair of classes
 – Testing: each learned SVM “votes” for a class to assign to the test example
Measuring classification performance

- Confusion matrix
- Accuracy
 - \(\frac{(TP+TN)}{(TP+TN+FP+FN)} \)
- True Positive Rate = Recall
 - \(\frac{TP}{(TP+FN)} \)
- False Positive Rate
 - \(\frac{FP}{(FP+TN)} \)
- Precision
 - \(\frac{TP}{(TP+FP)} \)
- F1 Score
 - \(\frac{2 \times \text{Recall} \times \text{Precision}}{\text{Recall} + \text{Precision}} \)

<table>
<thead>
<tr>
<th>Actual class</th>
<th>Predicted class</th>
<th>Predicted</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>True Positive</td>
<td>False Negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>False Positive</td>
<td>True Negative</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class1</th>
<th>Class2</th>
<th>Class3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class1</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>Class2</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>Class3</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

Slide credit: D. Hoiem, R. Guo
ROC curve

- Receiver operating characteristic
 - Area under the curve (AUC)
 - Equal Error Rate (EER)

Slide credit: D. Hoiem, R. Guo
Outline

• Generic object recognition
• Classifiers
• Object category detection
• Sliding-windows based models
Object Category Detection

- Focus on object search: “Where is it?”
- Build templates that quickly differentiate object patch from background patch

Slide credit: D. Hoiem
Challenges in modeling the object class

Illumination
Object pose
Clutter

Occlusions
Intra-class appearance
Viewpoint

Slide credit: K. Grauman and B. Leibe
Challenges in modeling the non-object class

- True Detections
- Confused with Dissimilar Objects
- Confused with Similar Object
- Bad Localization
- Misc. Background

Slide credit: D. Hoiem
General Process of Object Recognition

1. Specify Object Model
2. Generate Hypotheses
3. Score Hypotheses
4. Resolve Detections

What are the object parameters?

Slide credit: D. Hoiem
Specifying an object model

1. Statistical Template in Bounding Box
 - Object is some (x,y,w,h) in image
 - Features defined wrt bounding box coordinates
Specifying an object model

2. Articulated parts model
 - Object is configuration of parts
 - Each part is detectable
Specifying an object model

3. Hybrid template/parts model

Detections

Template Visualization

Felzenszwalb et al., 2008
Specifying an object model

4. 3D-ish model

- Object is collection of 3D planar patches under affine transformation
General Process of Object Recognition

1. Specify Object Model
2. Generate Hypotheses
 - Propose an alignment of the model to the image
3. Score Hypotheses
4. Resolve Detections

Slide credit: D. Hoiem
Generating hypotheses

1. Sliding window
 - Test patch at each location and scale
Generating hypotheses

1. Sliding window
 - Test patch at each location and scale
Generating hypotheses

2. Voting from patches/keypoints

ISM model by Leibe et al.
Generating hypotheses

3. Region-based proposal
General Process of Object Recognition

1. Specify Object Model
2. Generate Hypotheses
3. Score Hypotheses
4. Resolve Detections

Mainly-gradient based features, usually based on summary representation, many classifiers

Slide credit: D. Hoiem
General Process of Object Recognition

Specify Object Model
Generate Hypotheses
Score Hypotheses
Resolve Detections

Rescore each proposed object based on whole set

Slide credit: D. Hoiem
Resolving detection scores

1. Non-max suppression
Resolving detection scores

2. Context/reasoning

(g) Car Detections: Local (h) Ped Detections: Local
Object category detection in computer vision

- Goal: detect all pedestrians, cars, monkeys, etc in image
Basic Steps of Category Detection

1. Align
 - E.g., choose position, scale orientation
 - How to make this tractable?

2. Compare
 - Compute similarity to an example object or to a summary representation
 - Which differences in appearance are important?

Slide credit: D. Hoiem
Outline

- Generic object recognition
- Classifiers
- Object category detection
- Sliding-windows based models
Sliding window: a simple alignment solution
Each window is separately classified
Statistical Template

- Object model = sum of scores of features at fixed positions

\[+3 +2 -2 -1 -2.5 = -0.5 \quad ? > 7.5 \]

Non-object

\[+4 +1 +0.5 +3 +0.5 = 10.5 \quad ? > 7.5 \]

Object

Slide credit: D. Hoiem
Design challenges

• How to efficiently search for likely objects
 – Even simple models require searching hundreds of thousands of positions and scales

• Feature design and scoring
 – How should appearance be modeled? What features correspond to the object?

• How to deal with different viewpoints?
 – Often train different models for a few different viewpoints

• Implementation details
 – Window size
 – Aspect ratio
 – Translation/scale step size
 – Non-maxima suppression

Slide credit: D. Hoiem
Example: Dalal-Triggs pedestrian detector

1. Extract fixed-sized (64x128 pixel) window at each position and scale
2. Compute HOG (histogram of gradient) features within each window
3. Score the window with a linear SVM classifier
4. Perform non-maxima suppression to remove overlapping detections with lower scores

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05
• Tested with
 – RGB \quad \text{Slightly better performance vs. grayscale}
 – LAB
 – Grayscale

• Gamma Normalization and Compression
 – Square root \quad \text{Very slightly better performance vs. no adjustment}
 – Log
Outperforms

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05
-**Histogram of gradient orientations**

 Orientation: 9 bins (for unsigned angles)

 - Votes weighted by magnitude
 - Bilinear interpolation between cells

 Histograms in 8x8 pixel cells

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

Slide credit: D. Hoiem, P. Barnum
Normalize with respect to surrounding cells

\[L_2 - \text{norm}: v \rightarrow v / \sqrt{\|v\|^2_2 + \epsilon^2} \]
Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

Slide credit: D. Hoiem, P. Barnum
Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

Slide credit: D. Hoiem, P. Barnum
Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

$0.16 = w^T x - b$

$\text{sign}(0.16) = 1$

\implies pedestrian

Slide credit: D. Hoiem, P. Barnum
Detection examples
Viola-Jones sliding window detector

Fast detection through two mechanisms

- Quickly eliminate unlikely windows
- Use features that are fast to compute

Viola and Jones. [Rapid Object Detection using a Boosted Cascade of Simple Features](http://www.cs.cmu.edu/~tiwari/papers/01a.pdf) 2001
Cascade for Fast Detection

- Choose threshold for low false negative rate
- Fast classifiers early in cascade
- Slow classifiers later, but most examples don’t get there
Features that are fast to compute

• “Haar-like features”
 – Differences of sums of intensity
 – Thousands, computed at various positions and scales within detection window

Slide credit: D. Hoiem
Integral Images

- $ii = \text{cumsum}(\text{cumsum}(im, 1), 2)$

$$ii(x,y) = \text{Sum of the values in the grey region}$$

How to compute $A + D - B - C$?

How to compute $B - A$?

How to compute $A + D - B - C$?
Feature selection with Adaboost

- Create a large pool of features (180K)
- Select features that are discriminative and work well together
 - “Weak learner” = feature + threshold + parity
 \[h_j(x) = \begin{cases}
 1 & \text{if } p_j f_j(x) < p_j \theta_j \\
 0 & \text{otherwise}
 \end{cases} \]
 - Choose weak learner that minimizes error on the weighted training set
 - Reweight

Slide credit: D. Hoiem
• Given example images \((x_1, y_1), \ldots, (x_n, y_n)\) where \(y_i = 0, 1\) for negative and positive examples respectively.

• Initialize weights \(w_{1,i} = \frac{1}{2m}, \frac{1}{2l}\) for \(y_i = 0, 1\) respectively, where \(m\) and \(l\) are the number of negatives and positives respectively.

• For \(t = 1, \ldots, T\):
 1. Normalize the weights,
 \[
 w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}
 \]
 so that \(w_t\) is a probability distribution.
 2. For each feature, \(j\), train a classifier \(h_j\) which is restricted to using a single feature. The error is evaluated with respect to \(w_t\),
 \[
 \epsilon_j = \sum_i w_i |h_j(x_i) - y_i|.
 \]
 3. Choose the classifier, \(h_t\), with the lowest error \(\epsilon_t\).
 4. Update the weights:
 \[
 w_{t+1,i} = w_{t,i} \beta_t^{1-\epsilon_i}
 \]
 where \(\epsilon_i = 0\) if example \(x_i\) is classified correctly, \(\epsilon_i = 1\) otherwise, and \(\beta_t = \frac{e_t}{1-\epsilon_t}\).

• The final strong classifier is:
 \[
 h(x) = \begin{cases}
 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \geq \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\
 0 & \text{otherwise}
 \end{cases}
 \]
 where \(\alpha_t = \log \frac{1}{\beta_t}\).
Top 2 selected features
Viola-Jones details

• 38 stages with 1, 10, 25, 50 ... features
 – 6061 total used out of 180K candidates
 – 10 features evaluated on average

• Training Examples
 – 4916 positive examples
 – 10000 negative examples collected after each stage

• Scanning
 – Scale detector rather than image
 – Scale steps = 1.25 (factor between two consecutive scales)
 – Translation 1*scale (# pixels between two consecutive windows)

• Non-max suppression: average coordinates of overlapping boxes

• Train 3 classifiers and take vote
Viola Jones Results

Speed = 15 FPS (in 2001)

<table>
<thead>
<tr>
<th>Detector</th>
<th>False detections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Viola-Jones</td>
<td>76.1%</td>
</tr>
<tr>
<td>Viola-Jones (voting)</td>
<td>81.1%</td>
</tr>
<tr>
<td>Rowley-Baluja-Kanade</td>
<td>83.2%</td>
</tr>
<tr>
<td>Schneiderman-Kanade</td>
<td>-</td>
</tr>
<tr>
<td>Roth-Yang-Ahuja</td>
<td>-</td>
</tr>
</tbody>
</table>

MIT + CMU face dataset

Slide credit: D. Hoiem
Strengths and Weaknesses of Statistical Template Approach

Strengths
• Works very well for non-deformable objects: faces, cars, upright pedestrians
• Fast detection

Weaknesses
• Not so well for highly deformable objects
• Not robust to occlusion
• Requires lots of training data
Tricks of the trade

• Details in feature computation really matter
 – E.g., normalization in Dalal-Triggs improves detection rate by 27% at fixed false positive rate

• Template size
 – Typical choice is size of smallest detectable object

• “Jittering” to create synthetic positive examples
 – Create slightly rotated, translated, scaled, mirrored versions as extra positive examples

• Bootstrapping to get hard negative examples
 1. Randomly sample negative examples
 2. Train detector
 3. Sample negative examples that score > -1
 4. Repeat until all high-scoring negative examples fit in memory

Slide credit: D. Hoiem
Consumer application: iPhoto 2009

- **Things iPhoto thinks are faces**
Influential Works in Detection

• Sung-Poggio (1994, 1998) : ~1750 citations
 – Basic idea of statistical template detection (I think), bootstrapping to get “face-like” negative examples, multiple whole-face prototypes (in 1994)

 – “Parts” at fixed position, non-maxima suppression, simple cascade, rotation, pretty good accuracy, fast

 – Careful feature engineering, excellent results, cascade

• Viola-Jones (2001, 2004) : ~11,000
 – Haar-like features, Adaboost as feature selection, hyper-cascade, very fast, easy to implement

• Dalal-Triggs (2005) : ~3250
 – Careful feature engineering, excellent results, HOG feature, online code

• Felzenszwalb-Huttenlocher (2000): ~1000
 – Efficient way to solve part-based detectors

• Felzenszwalb-McAllester-Ramanan (2008)? ~800
 – Excellent template/parts-based blend

Slide credit: D. Hoiem
Things to remember

• Sliding window for search

• Features based on differences of intensity (gradient, wavelet, etc.)
 – Excellent results require careful feature design

• Boosting for feature selection

• Integral images, cascade for speed

• Bootstrapping to deal with many, many negative examples

Slide credit: D. Hoiem