Lecture 12:

- Computational Graph
- Backpropagation
Administrative

• **Assignment 2** due March 20, 2016!

• **Midterm exam** on Thursday, March 24, 2016
 - You are responsible from the beginning till the end of this class
 - You can prepare and bring a full-page copy sheet (A4-paper, both sides) to the exam.

• **Assignment 3** will be out soon!
 - It is due April 7, 2016
 - You will implement a 2-layer Neural Network
Last time...

Multilayer Perceptron

- Layer Representation
 \[y_i = W_i x_i \]
 \[x_{i+1} = \sigma(y_i) \]

- (typically) iterate between linear mapping \(Wx \) and nonlinear function

- Loss function \(l(y, y_i) \) to measure quality of estimate so far
Output of the network can be written as:

\[h_j(x) = f(v_{j0} + \sum_{i=1}^{D} x_i v_{ji}) \]

\[o_k(x) = g(w_{k0} + \sum_{j=1}^{J} h_j(x) w_{kj}) \]

(j indexing hidden units, k indexing the output units, D number of inputs)

Activation functions \(f, g \): sigmoid/logistic, tanh, or rectified linear (ReLU)

\[\sigma(z) = \frac{1}{1 + \exp(-z)} \]
\[\tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)} \]
\[\text{ReLU}(z) = \max(0, z) \]
Last time... Forward Pass in Python

• Example code for a forward pass for a 3-layer network in Python:

```
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x))  # activation function (use sigmoid)
x = np.random.randn(3, 1)            # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1)           # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2)          # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3            # output neuron (1x1)
```

• Can be implemented efficiently using matrix operations
• Example above: \(W_1 \) is matrix of size \(4 \times 3 \), \(W_2 \) is \(4 \times 4 \). What about biases and \(W_3 \)?

[http://cs231n.github.io/neural-networks-1/]
Today

• Backpropagation and Neural Networks

• Tips and Tricks
Backpropagation and Neural Networks
Recap: Loss function/Optimization

1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.

2. Come up with a way of efficiently finding the parameters that minimize the loss function. *(optimization)*

<table>
<thead>
<tr>
<th>word</th>
<th>loss 1</th>
<th>loss 2</th>
<th>loss 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>airplane</td>
<td>-3.45</td>
<td>-0.51</td>
<td>3.42</td>
</tr>
<tr>
<td>automobile</td>
<td>-8.87</td>
<td>6.04</td>
<td>4.64</td>
</tr>
<tr>
<td>bird</td>
<td>0.09</td>
<td>5.31</td>
<td>2.65</td>
</tr>
<tr>
<td>cat</td>
<td>2.9</td>
<td>-4.22</td>
<td>5.1</td>
</tr>
<tr>
<td>deer</td>
<td>4.48</td>
<td>-4.19</td>
<td>2.64</td>
</tr>
<tr>
<td>dog</td>
<td>8.02</td>
<td>3.58</td>
<td>5.55</td>
</tr>
<tr>
<td>frog</td>
<td>3.78</td>
<td>4.49</td>
<td>-4.34</td>
</tr>
<tr>
<td>horse</td>
<td>1.06</td>
<td>-4.37</td>
<td>-1.5</td>
</tr>
<tr>
<td>ship</td>
<td>-0.36</td>
<td>-2.09</td>
<td>-4.79</td>
</tr>
<tr>
<td>truck</td>
<td>-0.72</td>
<td>-2.93</td>
<td>6.14</td>
</tr>
</tbody>
</table>

We defined a (linear) **score function**:

\[f(x_i, W, b) = Wx_i + b \]
Softmax Classifier (Multinomial Logistic Regression)

cat 3.2

car 5.1

frog -1.7
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

\[s = f(x_i; W) \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

where \[s = f(x_i; W) \]

cat 3.2
car 5.1
frog -1.7
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

$$P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

where

$$s = f(x_i; W)$$

<table>
<thead>
<tr>
<th>Class</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

where

\[s = f(x_i; W) \]

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

\[L_i = -\log P(Y = y_i | X = x_i) \]

cat 3.2
frog -1.7
car 5.1
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

where

\[s = f(x_i; W) \]

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

\[L_i = - \log P(Y = y_i | X = x_i) \]

in summary:

\[L_i = - \log \left(\frac{e^{sy_i}}{\sum_j e^{sj}} \right) \]
Softmax Classifier (Multinomial Logistic Regression)

\[L_i = - \log \left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}} \right) \]

<table>
<thead>
<tr>
<th>cat</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>

unnormalized log probabilities
Softmax Classifier (Multinomial Logistic Regression)

\[
L_i = -\log\left(\frac{e^{s_{yi}}}{\sum_j e^{s_j}}\right)
\]

unnormalized probabilities

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>

unnormalized log probabilities

\[
\text{exp}(3.2) = 24.5 \\
\text{exp}(5.1) = 164.0 \\
\text{exp}(-1.7) = 0.18
\]
Softmax Classifier (Multinomial Logistic Regression)

\[L_i = - \log \left(\frac{e^{s_y_i}}{\sum_j e^{s_j}} \right) \]

unnormalized probabilities

```
cat  
3.2  
5.1  
-1.7

car  

frog
```

unnormalized log probabilities

```
exp  
24.5
164.0
0.18
```

normalize

```
0.13
0.87
0.00
```

probabilities
Softmax Classifier (Multinomial Logistic Regression)

\[L_i = - \log \left(\frac{e^{s_y_i}}{\sum_j e^{s_j}} \right) \]

unnormalized probabilities

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp</td>
<td>3.2</td>
<td>5.1</td>
<td>-1.7</td>
</tr>
<tr>
<td>\exp</td>
<td>24.5</td>
<td>164.0</td>
<td>0.18</td>
</tr>
</tbody>
</table>

normalize

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.13</td>
<td>0.87</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\[L_i = - \log(0.13) = 0.89 \]
Optimization
Vanilla Gradient Descent

```python
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

In 1-dimensional, the derivative of a function:

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives).
Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient

```python
# Vanilla Minibatch Gradient Descent

while True:
    data_batch = sample_training_data(data, 256)  # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += -step_size * weights_grad  # perform parameter update
```
Mini-batch Gradient Descent

• only use a small portion of the training set to compute the gradient

```python
# Vanilla Minibatch Gradient Descent

while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

there are also more fancy update formulas (momentum, Adagrad, RMSProp, Adam, …)
The effects of different update form formulas
Example of optimization progress while training a neural network.

(Loss over mini-batches goes down over time.)
The effects of step size (or “learning rate”)

- **Very high learning rate**: Loss increases significantly after some epochs.
- **Low learning rate**: Progress is slow and steady.
- **High learning rate**: Loss decreases rapidly initially but may not reach the minimum effectively.
- **Good learning rate**: Best balance between fast convergence and stability.
Back-propagation
Computational Graph

\[f = Wx \]

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]
Convolutional Network (AlexNet)
Neural Turing Machine

input tape

loss
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, \ y = 5, \ z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, \ y = 5, \ z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \ \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \ \frac{\partial f}{\partial z} = q \]

Want: \[\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \]
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

\text{e.g. } x = -2, \ y = 5, \ z = -4

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \ \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \ \frac{\partial f}{\partial z} = q \]

Want: \[\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \]
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\(f(x, y, z) = (x + y)z \)

e.g. \(x = -2, y = 5, z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)

Chain rule:

\[\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y} \]
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, \ y = 5, \ z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \[\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \frac{\partial f}{\partial z} \]

Chain rule:

\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} \]
activations

\[f \]

\[x \]

\[y \]

\[z \]
activations

\[
\frac{\partial z}{\partial x}
\]

\[
\frac{\partial z}{\partial y}
\]

"local gradient"

\[
f
\]

\[
x
\]

\[
y
\]

\[
z
\]
activations

\[\frac{\partial z}{\partial x} \]

\[\frac{\partial z}{\partial y} \]

"local gradient"

\[\frac{\partial L}{\partial z} \]

gradients
activations

\[\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x} \]

“local gradient”

\[\frac{\partial z}{\partial x} \]

\[\frac{\partial z}{\partial y} \]

\[\frac{\partial L}{\partial z} \]

gradients
The diagram illustrates the concept of local gradients in neural networks. It shows how the gradients of the loss function L with respect to the inputs x and y are related to the gradients of the intermediate layer z.

- $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$
- $\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y}$

The term $\frac{\partial L}{\partial z}$ is referred to as the "local gradient".
Activations

\[\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x} \]

"Local gradient"

\[\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y} \]

Gradients
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
 f(x) &= e^x \\
 f_a(x) &= ax \
\end{align*}
\]

\[
\begin{align*}
 df &= e^x \\
 df &= a \
\end{align*}
\]

\[
\begin{align*}
 f(x) &= \frac{1}{x} \\
 f_c(x) &= c + x \\
\end{align*}
\]

\[
\begin{align*}
 \frac{df}{dx} &= -\frac{1}{x^2} \\
 \frac{df}{dx} &= 1 \
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
 f(x) &= e^x & \Rightarrow & \quad \frac{df}{dx} = e^x \\
 f_a(x) &= ax & \Rightarrow & \quad \frac{df}{dx} = a \\
 f_c(x) &= c + x & \Rightarrow & \quad \frac{df}{dx} = 1 \\
 f(x) &= \frac{1}{x} & \Rightarrow & \quad \frac{df}{dx} = -\frac{1}{x^2}
\end{align*}
\]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
f(x) &= e^x \\
f_a(x) &= ax
\end{align*}
\]

\[
\begin{align*}
\frac{df}{dx} &= e^x \\
\frac{df}{dx} &= a
\end{align*}
\]

\[
\begin{align*}
f(x) &= \frac{1}{x} \\
f_c(x) &= c + x
\end{align*}
\]

\[
\begin{align*}
\frac{df}{dx} &= -\frac{1}{x^2} \\
\frac{df}{dx} &= 1
\end{align*}
\]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
f(x) &= e^x & \frac{df}{dx} &= e^x \\
f_a(x) &= ax & \frac{df}{dx} &= a \\
f_c(x) &= c + x & \frac{df}{dx} &= 1
\end{align*}
\]

\[
\begin{align*}
f(x) &= \frac{1}{x} & \frac{df}{dx} &= -\frac{1}{x^2} \\
\end{align*}
\]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
\frac{df}{dx} &= e^x \\
\frac{df}{dx} &= ax \\
\frac{df}{dx} &= \frac{1}{x} \\
\frac{df}{dx} &= c + x
\end{align*}
\]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
 f(x) &= e^x & \Rightarrow & \quad \frac{df}{dx} &= e^x \\
 f_a(x) &= ax & \Rightarrow & \quad \frac{df}{dx} &= a \\
 f_c(x) &= c + x & \Rightarrow & \quad \frac{df}{dx} &= 1 \\
 f(x) &= \frac{1}{x} & \Rightarrow & \quad \frac{df}{dx} &= -\frac{1}{x^2}
\end{align*}
\]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
\text{for } f(x) = e^x & \quad \Rightarrow \quad \frac{df}{dx} = e^x \\
\text{for } f_a(x) = ax & \quad \Rightarrow \quad \frac{df}{dx} = a \\
\text{for } f_c(x) = c + x & \quad \Rightarrow \quad \frac{df}{dx} = 1 \\
\text{for } f(x) = \frac{1}{x} & \quad \Rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2}
\end{align*}
\]

\[
(e^{-1})(-0.53) = -0.20
\]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
 f(x) &= e^x & \frac{df}{dx} &= e^x \\
 f_a(x) &= ax & \frac{df}{dx} &= a \\
 f_c(x) &= c + x & \frac{df}{dx} &= 1 \\
 f(x) &= \frac{1}{x} & \frac{df}{dx} &= -\frac{1}{x^2}
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[(-1) \times (-0.20) = 0.20 \]

\(f(x) = e^x \) \[\frac{df}{dx} = e^x \]

\(f_a(x) = ax \) \[\frac{df}{dx} = a \]

\(f(x) = \frac{1}{x} \) \[\frac{df}{dx} = -\frac{1}{x^2} \]

\(f_c(x) = c + x \) \[\frac{df}{dx} = 1 \]
Another example: \[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\begin{align*}
 f(x) &= e^x \\
 \frac{df}{dx} &= e^x \\
 f_a(x) &= ax \\
 \frac{df}{dx} &= a \\
 f_c(x) &= c + x \\
 \frac{df}{dx} &= 1 \\
 f(x) &= \frac{1}{x} \\
 \frac{df}{dx} &= -\frac{1}{x^2}
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

[local gradient] \times [its gradient]

\[[1] \times [0.2] = 0.2 \]
\[[1] \times [0.2] = 0.2 \text{ (both inputs!)} \]

\[
\begin{align*}
 f(x) &= e^x & \frac{df}{dx} &= e^x \\
 f_a(x) &= ax & \frac{df}{dx} &= a \\
 f_c(x) &= c + x & \frac{df}{dx} &= 1 \\
 f(x) &= \frac{1}{x} & \frac{df}{dx} &= -\frac{1}{x^2}
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]
Another example:
\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

[local gradient] \times [its gradient]
- \(x_0: [2] \times [0.2] = 0.4 \)
- \(w_0: [-1] \times [0.2] = -0.2 \)

\[f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x \]
\[f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a \]
\[f(x) = \frac{1}{x} \quad \rightarrow \quad \frac{df}{dx} = -\frac{1}{x^2} \]
\[f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1 \]
\[f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

\[\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}}\right) \left(\frac{1}{1 + e^{-x}}\right) = (1 - \sigma(x)) \sigma(x) \]
\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

\[\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}}\right) \left(\frac{1}{1 + e^{-x}}\right) = (1 - \sigma(x))\sigma(x) \]

sigmoid function

\[
(0.73) \times (1 - 0.73) = 0.2
\]
Patterns in backward flow

- add gate: gradient distributor
- max gate: gradient router
- mul gate: gradient… “switcher”?
Gradients add at branches
Implementation: forward/backward API

Graph (or Net) object.
(Rough pseudo code)

```python
class ComputationalGraph(object):
    #...
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes_topologically_sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss

    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs_gradients
```
Implementation: forward/backward API

```
class MultiplyGate(object):
    def forward(x, y):
        z = x*y
        return z
    def backward(dz):
        # dx = ... #todo
        # dy = ... #todo
        return [dx, dy]
```

(x, y, z are scalars)
Implementation: forward/backward API

(x,y,z are scalars)

```python
class MultiplyGate(object):
    def forward(x,y):
        z = x*y
        self.x = x # must keep these around!
        self.y = y
        return z
    def backward(dz):
        dx = self.y * dz # [dz/dx * dL/dz]
        dy = self.x * dz # [dz/dy * dL/dz]
        return [dx, dy]
```
Summary

• neural nets will be very large: no hope of writing down gradient formula by hand for all parameters

• **backpropagation** = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates

• implementations maintain a graph structure, where the nodes implement the **forward** / **backward** API.

• **forward**: compute result of an operation and save any intermediates needed for gradient computation in memory

• **backward**: apply the chain rule to compute the gradient of the loss function with respect to the inputs.
Where are we now...

Mini-batch SGD

Loop:
1. **Sample** a batch of data
2. **Forward** prop it through the graph, get loss
3. **Backprop** to calculate the gradients
4. **Update** the parameters using the gradient
Next Lecture:

Convolutional Neural Networks