Lecture 14: Deep Convolutional Networks

Aykut Erdem
April 2016
Hacettepe University

HCL
HACETEPE UNIVERSITY
COMPUTER VISION LAB
Administrative

• **Assignment 3** is due April 7, 2016!

• **Progress reports** are approaching
  – It is due around April 19, 2016
Last time... Intro. to Deep Learning

VISION

SIFT/HOG → K-Means/pooling → classifier → “learned” → “car”

fixed → unsupervised → supervised

SPEECH

MFCC → Mixture of Gaussians → classifier

fixed → unsupervised → supervised

NLP

This burrito place is yummy and fun! → Parse Tree Syntactic → n-grams → classifier → “+”

fixed → unsupervised → supervised
Last time... *Intro. to Deep Learning*

- “Shallow” models

- Deep models
Convolutions

- Images typically have invariant patterns
  - E.g., directional gradients are translational invariant:

  ![Example of convolution](image)

- Apply convolution to local sliding windows

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
Convolution Filters

• Applies to an image patch $x$
  - Converts local window into single value
  - Slide across image

\[ x \bigotimes W = \sum_{ij} W_{ij} x_{ij} \]

Left-to-Right Edge Detector

\[
\begin{array}{ccc}
-1 & 0 & +1 \\
-1 & 0 & +1 \\
-1 & 0 & +1 \\
\end{array}
\]

Local Image Patch

$\bigotimes W = \bigotimes W$
Gabor Filters

- Most common low-level convolutions for computer vision

Example $W$: ![Gabor Filters Example](image)

$$W = \begin{bmatrix}
-1 & 0 & +1 \\
-1 & 0 & +1 \\
-1 & 0 & +1 \\
-1 & 0 & +1 \\
\end{bmatrix}$$

http://en.wikipedia.org/wiki/Gabor_filter
Gaussian Blur Filters

- Weights decay according to Gaussian Distribution
  - Variance term controls radius

Example W:
Apply per RGB Channel

- Black = 0
- White = Positive

http://en.wikipedia.org/wiki/Gaussian_blur
Convolutional Neural Networks
Convolution Layer

32x32x3 image

- **Width**: 32
- **Height**: 32
- **Depth**: 3
Convolution Layer

A 32x32x3 image

A 5x5x3 filter

**Convolve** the filter with the image i.e. “slide over the image spatially, computing dot products”
Convolution Layer

32x32x3 image

5x5x3 filter

Filters always extend the full depth of the input volume

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”
Convolution Layer

32x32x3 image

5x5x3 filter $w$

1 number: the result of taking a dot product between the filter and a small 5x5x3 chunk of the image (i.e. $5 \times 5 \times 3 = 75$-dimensional dot product + bias)

$$w^T x + b$$
Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map

3
32
32

Fei-Fei Li, Andrej Karpathy & Justin Johnson
Convolution Layer

consider a second, green filter

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation maps

slide by Fei-Fei Li, Andrej Karpathy, & Justin Johnson
For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions.

- **Convolutional Layers**: For example, a 6x5x3 filter sliding by the input data.
- **Activation Functions**: ReLU (Rectified Linear Unit) is commonly used after convolutional layers.

The diagram illustrates a 3x3 input data (3x3x3) passed through a convolutional layer with 32 filters of size 5x5x3, resulting in an output of 6x28x32.
**Preview:** ConvNet is a sequence of Convolutional Layers, interspersed with activation functions.

- 32 \text{ Conv, ReLU} \text{ e.g. 6 \ 5x5x3 filters}
- 28 \text{ Conv, ReLU} \text{ e.g. 10 \ 5x5x6 filters}
- 24 \text{ Conv, ReLU}

...
Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
We call the layer convolutional because it is related to convolution of two signals:

\[ f[x,y] * g[x,y] = \sum_{n_1=-\infty}^{\infty} \sum_{n_2=-\infty}^{\infty} f[n_1,n_2] \cdot g[x-n_1,y-n_2] \]

elementwise multiplication and sum of a filter and the signal (image)
A closer look at spatial dimensions:

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter

=> 5x5 output
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 3?
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn’t fit! cannot apply 3x3 filter on 7x7 input with stride 3.
Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33
In practice: Common to zero pad the border

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1
In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with **stride 1**
**pad with 1 pixel** border => what is the output?

7x7 output!
In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with \((F-1)/2\). (will preserve size spatially)
e.g. \(F = 3\) => zero pad with 1
    \(F = 5\) => zero pad with 2
    \(F = 7\) => zero pad with 3
Remember back to…
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

CONV, ReLU e.g. 6 5x5x3 filters

CONV, ReLU e.g. 10 5x5x6 filters

CONV, ReLU
Recap: Convolution Layer

\[ f = Wx \]

\[ W = \begin{pmatrix}
  w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2} & 0 & 0 & 0 & 0 & 0 \\
  0 & w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2} & 0 & 0 & 0 & 0 \\
  0 & 0 & 0 & 0 & w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2} & 0 \\
  0 & 0 & 0 & 0 & 0 & w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2}
\end{pmatrix} \]

(No padding, no strides)
Convolving a $3 \times 3$ kernel over a $4 \times 4$ input using unit strides
(i.e., $i = 4$, $k = 3$, $s = 1$ and $p = 0$).

Image credit: Vincent Dumoulin and Francesco Visin
Computing the output values of a 2D discrete convolution

\[ i_1 = i_2 = 5, \quad k_1 = k_2 = 3, \quad s_1 = s_2 = 2, \quad \text{and} \quad p_1 = p_2 = 1 \]

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Image credit: Vincent Dumoulin and Francesco Visin
Examples time:

Input volume: **32x32x3**
10 5x5 filters with stride 1, pad 2

Output volume size: ?
Examples time:

Input volume: \(32 \times 32 \times 3\)
10 5x5 filters with stride 1, pad 2

Output volume size:
\[
\frac{(32 + 2 \times 2 - 5)}{1} + 1 = 32 \text{ spatially, so } 32 \times 32 \times 10
\]
Examples time:

Input volume: \textbf{32x32x3}  
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
Examples time:

Input volume: $32 \times 32 \times 3$

10 $5 \times 5$ filters with stride 1, pad 2

Number of parameters in this layer?

Each filter has $5 \times 5 \times 3 + 1 = 76$ params ( +1 for bias )

$=> 76 \times 10 = 760$
Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hyperparameters:
  - Number of filters $K$,
  - their spatial extent $F$,
  - the stride $S$,
  - the amount of zero padding $P$.
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
  - $W_2 = (W_1 - F + 2P)/S + 1$
  - $H_2 = (H_1 - F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
  - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and $K$ biases.
- In the output volume, the $d$-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the $d$-th filter over the input volume with a stride of $S$, and then offset by $d$-th bias.
Common settings:

- $K = \text{(powers of 2, e.g. 32, 64, 128, 512)}$
- $F = 3, S = 1, P = 1$
- $F = 5, S = 1, P = 2$
- $F = 5, S = 2, P = ? \text{ (whatever fits)}$
- $F = 1, S = 1, P = 0$
(btw, 1x1 convolution layers make perfect sense)

1x1 CONV with 32 filters (each filter has size 1x1x64, and performs a 64-dimensional dot product)
Example: CONV layer in Torch

**SpatialConvolution**

```
module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dw], [dH], [padW], [padH])
```

Applies a 2D convolution over an input image composed of several input planes. The input tensor in `forward(input)` is expected to be a 3D tensor \((nInputPlane \times \text{height} \times \text{width})\).

The parameters are the following:

- **nInputPlane**: The number of expected input planes in the image given into `forward()`.
- **nOutputPlane**: The number of output planes the convolution layer will produce.
- **kW**: The kernel width of the convolution.
- **kH**: The kernel height of the convolution.
- **dw**: The step of the convolution in the width dimension. Default is 1.
- **dH**: The step of the convolution in the height dimension. Default is 1.
- **padW**: The additional zeros added per width to the input planes. Default is 0, a good number is \((kW-1)/2\).
- **padH**: The additional zeros added per height to the input planes. Default is \(padW\), a good number is \((kH-1)/2\).

Note that depending of the size of your kernel, several (of the last) columns or rows of the input image might be lost. It is up to the user to add proper padding in images.

If the input image is a 3D tensor \(nInputPlane \times \text{height} \times \text{width}\), the output image size will be \(nOutputPlane \times \text{oheight} \times \text{owidth}\) where:

\[
\text{owidth} = \text{floor}(\text{width} + 2 \times \text{padW} - \text{kW} / \text{dw} + 1)
\]

\[
\text{oheight} = \text{floor}(\text{height} + 2 \times \text{padH} - \text{kH} / \text{dH} + 1)
\]

**Summary.** To summarize, the Conv Layer:

- Accepts a volume of size \(W_1 \times H_1 \times D_1\).
- Requires four hyperparameters:
  - Number of filters \(K\),
  - their spatial extent \(F\),
  - the stride \(S\),
  - the amount of zero padding \(P\).
Example: CONV layer in Caffe

```
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  # learning rate and decay multipliers for the filters
  param { lr_mult: 1 decay_mult: 1 }
  # learning rate and decay multipliers for the biases
  param { lr_mult: 2 decay_mult: 0 }
  convolution_param {
    num_output: 96  # learn 96 filters
    kernel_size: 11  # each filter is 11x11
    stride: 4  # step 4 pixels between each filter application
    weight_filler {
      type: "gaussian"  # initialize the filters from a Gaussian
      std: 0.01  # distribution with stdev 0.01 (default mean: 0)
    }
    bias_filler {
      type: "constant"  # initialize the biases to zero (0)
      value: 0
    }
  }
}
```

**Summary.** To summarize, the Conv Layer:

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hyperparameters:
  - Number of filters $K$,
  - their spatial extent $F$,
  - the stride $S$,
  - the amount of zero padding $P$. 
Example: CONV layer in Lasagne

```
class lasagne.layers.Conv2DLayer(incoming, num_filters, filter_size, stride=(1, 1), pad=0,
untie_biases=False, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0),
nonlinearity=lasagne.nonlinearities.rectify, flip_filters=True, convolution=theano.tensor.nnet.conv2d,
**kwargs) [source]
```

2D convolutional layer

Performs a 2D convolution on its input and optionally adds a bias and applies an elementwise nonlinearity.

**Parameters:**
- `incoming`: a Layer instance or a tuple
  - The layer feeding into this layer, or the expected input shape. The output of this layer should be a 4D tensor, with shape:
    (batch_size, num_input_channels, input_rows, input_columns).
- `num_filters`: int
  - The number of learnable convolutional filters this layer has.
- `filter_size`: int or iterable of int
  - An integer or a 2-element tuple specifying the size of the filters.
- `stride`: int or iterable of int
  - An integer or a 2-element tuple specifying the stride of the convolution operation.
- `pad`: int, iterable of int, 'full', 'same' or 'valid' (default: 0)
  - By default, the convolution is only computed where the input and the filter fully overlap (a valid convolution). When `stride=1`, this yields an output that is smaller than the input by: `filter_size - 1`. The `pad` argument allows you to implicitly pad the input with zeros, extending the output size.
  - A single integer results in symmetric zero-padding of the given size on all borders, a tuple of two integers allows different symmetric padding per dimension.
  - `'full'` pads with one less than the filter size on both sides. This is equivalent to computing the convolution wherever the input and the filter overlap by at least one position.
  - `'same'` pads with half the filter size (rounded down) on both sides. When `stride=1` this results in an output size equal to the input size. Even filter size is not supported.
  - `'valid'` is an alias for `0` (no padding / a valid convolution).

**Summary:** To summarize, the Conv Layer:

- Accepts a volume of size \(W_1 \times H_1 \times D_1\).
- Requires four hyperparameters:
  - Number of filters \(K\),
  - their spatial extent \(F\),
  - the stride \(S\),
  - the amount of zero padding \(P\).
The brain/neuron view of CONV Layer

A 32x32x3 image

A 5x5x3 filter

1 number: the result of taking a dot product between the filter and this part of the image (i.e. 5*5*3 = 75-dimensional dot product)
The brain/neuron view of CONV Layer

32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

It’s just a neuron with local connectivity...
An activation map is a 28x28 sheet of neuron outputs:
1. Each is connected to a small region in the input
2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”
E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume
Activation Functions
Activation Functions

**Sigmoid**

\[ \sigma(x) = \frac{1}{1 + e^{-x}} \]

**tanh**  \( \tanh(x) \)

**ReLU**  \( \max(0, x) \)
Sigmoid - Squashes numbers to range [0,1]  
- Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
3. exp() is a bit compute expensive
Activation Functions

- Squashes numbers to range \([-1, 1]\)
- zero centered (nice)
- still kills gradients when saturated :(  

\[
tanh(x)
\]

[LeCun et al., 1991]
Activation Functions

- Computes \( f(x) = \max(0,x) \)
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
two more layers to go: POOL/FC
Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

![Diagram of pooling process](image)
Max Pooling

Single depth slice

\[
\begin{array}{cccc}
1 & 1 & 2 & 4 \\
5 & 6 & 7 & 8 \\
3 & 2 & 1 & 0 \\
1 & 2 & 3 & 4 \\
\end{array}
\]

max pool with 2x2 filters and stride 2

\[
\begin{array}{cc}
6 & 8 \\
3 & 4 \\
\end{array}
\]
• Accepts a volume of size $W_1 \times H_1 \times D_1$
• Requires three hyperparameters:
  ◦ their spatial extent $F$,
  ◦ the stride $S$,
• Produces a volume of size $W_2 \times H_2 \times D_2$ where:
  ◦ $W_2 = (W_1 - F)/S + 1$
  ◦ $H_2 = (H_1 - F)/S + 1$
  ◦ $D_2 = D_1$
• Introduces zero parameters since it computes a fixed function of the input
• Note that it is not common to use zero-padding for Pooling layers
Common settings:

- $F = 2, \ S = 2$
- $F = 3, \ S = 2$

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires three hyperparameters:
  - their spatial extent $F$,
  - the stride $S$,
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
  - $W_2 = (W_1 - F)/S + 1$
  - $H_2 = (H_1 - F)/S + 1$
  - $D_2 = D_1$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers
Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural Networks
[ConvNetJS demo: training on CIFAR-10]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
Case Study: LeNet-5 [LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

**First layer** (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55
**Case Study: AlexNet**
*Krizhevsky et al. 2012*

**Input:** 227x227x3 images

**First layer (CONV1):** 96 11x11 filters applied at stride 4

=>

**Output volume:** [55x55x96]

**Q:** What is the total number of parameters in this layer?
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

**First layer (CONV1):** 96 11x11 filters applied at stride 4

=>

Output volume **[55x55x96]**

Parameters: (11*11*3)*96 = 35K
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

**Second layer (POOL1):** 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96

...
Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)
Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%
Case Study: ZFNet \cite{Zeiler2013}

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 15.4\% -> 14.8\%
Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013

--> 7.3% top 5 error
INPUT: [224x224x3]  memory: 224*224*3=150K  params: 0

CONV3-64: [224x224x64]  memory: 224*224*64=3.2M  params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64]  memory: 224*224*64=3.2M  params: (3*3*64)*64 = 36,864

POOL2: [112x112x64]  memory: 112*112*64=800K  params: 0

CONV3-128: [112x112x128]  memory: 112*112*128=1.6M  params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]  memory: 112*112*128=1.6M  params: (3*3*128)*128 = 147,456

POOL2: [56x56x128]  memory: 56*56*128=800K  params: 0

CONV3-256: [56x56x256]  memory: 56*56*256=800K  params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]  memory: 56*56*256=800K  params: (3*3*256)*256 = 589,824

CONV3-256: [56x56x256]  memory: 56*56*256=800K  params: (3*3*256)*256 = 589,824

POOL2: [28x28x256]  memory: 28*28*256=200K  params: 0

CONV3-512: [28x28x512]  memory: 28*28*512=400K  params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512]  memory: 28*28*512=400K  params: (3*3*512)*512 = 2,359,296

CONV3-512: [28x28x512]  memory: 28*28*512=400K  params: (3*3*512)*512 = 2,359,296

POOL2: [14x14x512]  memory: 14*14*512=100K  params: 0

CONV3-512: [14x14x512]  memory: 14*14*512=100K  params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory: 14*14*512=100K  params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512]  memory: 14*14*512=100K  params: (3*3*512)*512 = 2,359,296

POOL2: [7x7x512]  memory: 7*7*512=25K  params: 0

FC: [1x1x4096]  memory: 4096  params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096]  memory: 4096  params: 4096*4096 = 16,777,216

FC: [1x1x1000]  memory: 1000  params: 4096*1000 = 4,096,000

(not counting biases)
INPUT: [224x224x3]  memory:  224*224*3=150K  params: 0

CONV3-64: [224x224x64]  memory:  224*224*64=3.2M  params: (3*3*3)*64 = 1,728

CONV3-64: [224x224x64]  memory:  224*224*64=3.2M  params: (3*3*64)*64 = 36,864

POOL2: [112x112x64]  memory:  112*112*64=800K  params: 0

CONV3-128: [112x112x128]  memory:  112*112*128=1.6M  params: (3*3*64)*128 = 73,728

CONV3-128: [112x112x128]  memory:  112*112*128=1.6M  params: (3*3*128)*128 = 147,456

POOL2: [56x56x128]  memory:  56*56*128=800K  params: 0

CONV3-256: [56x56x256]  memory:  56*56*256=800K  params: (3*3*128)*256 = 294,912

CONV3-256: [56x56x256]  memory:  56*56*256=800K  params: (3*3*256)*256 = 589,824

CONV3-256: [56x56x256]  memory:  56*56*256=800K  params: (3*3*256)*256 = 589,824

POOL2: [28x28x256]  memory:  28*28*256=200K  params: 0

CONV3-512: [28x28x512]  memory:  28*28*512=400K  params: (3*3*256)*512 = 1,179,648

CONV3-512: [28x28x512]  memory:  28*28*512=400K  params: (3*3*512)*512 = 2,359,296

CONV3-512: [28x28x512]  memory:  28*28*512=400K  params: (3*3*512)*512 = 2,359,296

POOL2: [14x14x512]  memory:  14*14*512=100K  params: 0

CONV3-512: [14x14x512]  memory:  14*14*512=100K  params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512]  memory:  14*14*512=100K  params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512]  memory:  14*14*512=100K  params: (3*3*512)*512 = 2,359,296

POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0

FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216

FC: [1x1x1000]  memory:  1000  params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
INPUT: [224x224x3] memory: 224*224*3=150K params: 0

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864

POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 73,728

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456

POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 1,179,648

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)

TOTAL params: 138M parameters

Note:
Most memory is in early CONV

Most params are in late FC

(not counting biases)
Case Study: GoogLeNet [Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)
Case Study: ResNet \cite{he2015deep}  
ILSVRC 2015 winner  
(3.6\% top 5 error)

MSRA @ ILSVRC & COCO 2015 Competitions

- **1st places in all five main tracks**
  - ImageNet Classification: “Ultra-deep” (quote Yann) 152-layer nets
  - ImageNet Detection: 16\% better than 2nd
  - ImageNet Localization: 27\% better than 2nd
  - COCO Detection: 11\% better than 2nd
  - COCO Segmentation: 12\% better than 2nd

*improvements are relative numbers*


Slide from Kaiming He’s recent presentation  
https://www.youtube.com/watch?v=1PGLj-uKT1w
Case Study: ResNet [He et al., 2015]
ILSVRC 2015 winner
(3.6% top 5 error)

2-3 weeks of training on 8 GPU machine
at runtime: faster than a VGGNet!
(even though it has 8x more layers)

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)
VGG, 19 layers (ILSVRC 2014)
ResNet, 152 layers (ILSVRC 2015)

(slide from Kaiming He’s recent presentation)
Case Study: ResNet \cite{He2015}

224x224x3

spatial dimension only 56x56!
Case Study Bonus: DeepMind’s AlphaGo
The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a $23 \times 23$ image, then convolves $k$ filters of kernel size $5 \times 5$ with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a $21 \times 21$ image, then convolves $k$ filters of kernel size $3 \times 3$ with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size $1 \times 1$ with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used $k = 192$ filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with $k = 128, 256$ and 384 filters.

**policy network:**

[19x19x48] Input

CONV1: 192 5x5 filters, stride 1, pad 2 => [19x19x192]

CONV2..12: 192 3x3 filters, stride 1, pad 1 => [19x19x192]

CONV: 1 1x1 filter, stride 1, pad 0 => [19x19] (*probability map of promising moves*)
Summary

- ConvNets stack CONV, POOL, FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like
  \[(\text{CONV-RELU})*N-\text{POOL?}]*M-\text{(FC-RELU)}*K,\text{SOFTMAX}\]
  where \(N\) is usually up to \(~5\), \(M\) is large, \(0 \leq K \leq 2\).
  - but recent advances such as ResNet/GoogLeNet challenge this paradigm
Understanding ConvNets
Input Image

RGB Input Image
224 x 224 x 3

7x7x3 Convolution
3x3 Max Pooling
Down Sample 4x
55 x 55 x 96

5x5x96 Convolution
3x3 Max Pooling
Down Sample 4x
13 x 13 x 256

3x3x256 Convolution
13 x 13 x 354

3x3x354 Convolution
3x3 Max Pooling
Down Sample 2x
6 x 6 x 256

3x3x354 Convolution
13 x 13 x 354

Logistic Regression
≈1000 Classes

Standard 4096 Units

Standard 4096 Units

Standard 4096 Units

Standard 4096 Units

http://www.image-net.org/
Visualizing CNN (Layer 1)

Visualizing CNN (Layer 2)

Part that Triggered Filter

Top Image Patches

Visualizing CNN (Layer 3)

Part that Triggered Filter

Top Image Patches

Visualizing CNN (Layer 4)

Part that Triggered Filter

Top Image Patches

Visualizing CNN (Layer 5)

Part that Triggered Filter

Top Image Patches

Deep Visualization Toolbox

yosinski.com/deepvis

#deepvis

Jason Yosinski  Jeff Clune  Anh Nguyen  Thomas Fuchs  Hod Lipson
Tips and Tricks
• Shuffle the training samples

• Use Dropout and Batch Normalization for regularization
Given a rectangular image, we first rescale the image such that the shorter side was of length 256, and then cropped out the central 256×256 patch from the resulting image.

Input representation

• Centered (0-mean) RGB values.

An input image (256x256)  Minus sign  The mean input image
Data Augmentation

• Our neural net has 60M real-valued parameters and 650,000 neurons
• It overfits a lot. Therefore, they train on 224x224 patches extracted randomly from 256x256 images, and also their horizontal reflections.

“This increases the size of our training set by a factor of 2048, though the resulting training examples are, of course, highly inter-dependent.”

[Krizhevsky et al. 2012]
Data Augmentation

- Alter the intensities of the RGB channels in training images.

"Specifically, we perform PCA on the set of RGB pixel values throughout the ImageNet training set. To each training image, we add multiples of the found principal components, with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from a Gaussian with mean zero and standard deviation 0.1…This scheme approximately captures an important property of natural images, namely, that object identity is invariant to changes in the intensity and color of the illumination. This scheme reduces the top-1 error rate by over 1%.”

[Krizhevsky et al. 2012]
Data Augmentation

Horizontal flips

![Original Image](image1)

![Horizontal Flip](image2)
Data Augmentation

Get creative!

Random mix/combinations of:
- translation
- rotation
- stretching
- shearing,
- lens distortions, … (go crazy)
Data augmentation improves human learning, not just deep learning

If you're trying to improve your golf swing or master that tricky guitar chord progression, here's some good news from researchers at Johns Hopkins University: You may be able to double how quickly you learn skills like these by introducing subtle variations into your practice routine.

The received wisdom on learning motor skills goes something like this: You need to build up "muscle memory" in order to perform mechanical tasks, like playing musical instruments or sports, quickly and efficiently. And the way you do that is via rote repetition — return hundreds of tennis serves, play that F major scale over and over until your fingers bleed, etc.

The wisdom on this isn't necessarily wrong, but the Hopkins research suggests it's incomplete. Rather than doing the same thing over and over, you might be able to learn things even faster — like, twice as fast — if you change up your routine. Practicing your baseball swing? Change the size and weight of your bat. Trying to nail a 12-bar blues in A major on the guitar? Spend 20 minutes playing the blues in E major, too. Practice your backhand using tennis rackets of varying size and weight.

Transfer Learning with ConvNets

1. Train on Imagenet
Transfer Learning with ConvNets

1. Train on Imagenet

2. Small dataset: feature extractor

Freeze these

Train this
Transfer Learning with ConvNets

1. Train on Imagenet

2. Small dataset: feature extractor
   - Freeze these
   - Train this

3. Medium dataset: finetuning
   - more data = retrain more of the network (or all of it)
   - Freeze these
   - Train this
Transfer Learning with ConvNets

1. Train on ImageNet

2. Small dataset: feature extractor
   - Freeze these
   - Train this

3. Medium dataset: finetuning
   - More data = retrain more of the network (or all of it)
   - Freeze these

   Tip: use only ~1/10th of the original learning rate in finetuning top layer, and ~1/100th on intermediate layers

   - Train this
Today ConvNets are everywhere

Classification

Retrieval

[Mnih 2013]
Today ConvNets are everywhere

Detection

Segmentation

[Faster R-CNN: Ren, He, Girshick, Sun 2015]  [Farabet et al., 2012]
Today ConvNets are everywhere

self-driving cars

NVIDIA Tegra X1
Today ConvNets are everywhere

[Simonyan et al. 2014]

[Goodfellow 2014]

[Taigman et al. 2014]
Today ConvNets are everywhere

[Toshev, Szegedy 2014]

[Mnih 2013]
Today ConvNets are everywhere

[Ciresan et al. 2013]

[Sermanet et al. 2011]

[Ciresan et al.]
Today ConvNets are everywhere

---

[Denil et al., 2014]

I bought this movie on the Sci-Fi channel recently. It actually turned out to be pretty decent as far as B-list superhero films go. Two poor kids meet one evil villain and one good shadow. **Take a good trip to Sky, a bedroom but here the movie really goes off when a major character is killed.** Made about six years before deciding to play around with Deep Learning. Things get really complicated when they pick up a ridiculous alien who looks like a blue jay. What makes this film unique is the fact that the combination of comedy and terror actually works in this movie, unlike so many others. The two kids are likable enough and there are some good chase/monster scenes. The pacing and comedic timing make this movie more than possible for the whole family to have fun. **Incredibly well choreographed and shot.**

I saw this on a local independent station in the New York City area. The end credits promise but when I saw the director, [George C. Scott](https://www.imdb.com/name/nm0000190/) I knew something bad had come to pass. It was one of the best sets I have ever seen and I'm happy George C. Scott made it. The film is a simple one. Michael Bay, with all the DCEU-boosting promotions, no plot points that segue the characters on. We are left with Tron-like executive to control the data from some bit of a puzzle on various roads in the city in the next. Thus, the camera panning, the war in Iraq, Islamic extremism, the fate of social security, 47 million Americans without health care, stagnating wages, and the death of the middle class are all subsumed by the sheer terror of DGI. A truly, menacingly chaotic film.

Graphics is far from the best part of the game. This is the number one best TV game in the world. *Terminator: Underdaged* (best ever made). It is an intense game. There are massive levels, massive bone-sculpting characters, it's a massive game. Watch the opening in this game. This is the kind of series that is sprawled across worlds. Even though graphics suck, fans don't make a game good. Actually, the graphics were good at the time. Today the graphics are crap. WHO CARES? As they say in Canada. This is the two game. This game goes on! On this game is TERRIBLE. I don't know if they say that, but they might. Who knows. Well, Canadian people do. Wait a minute. I'm getting off topic. This game rocks. Buy it, play it, enjoy it. It's WORLDS BRILLIANCE. The two was good and original. It was a not bad heroically expensive movie. So I heard a second one was made and I had to watch it. What really makes this movie work is [David Benioff's](https://www.imdb.com/name/nm0414988/) chase and the sometimes-comic script. It's good acting up for a person. The Final Destination theme and the visual way they Sometimes there's moments where it feels like it was filmed using a home video-camera with a gritty look. Great made - for - TV movie. It was worth the rental just to watch the sequel to get that one. Ask the wife. [David Benioff's](https://www.imdb.com/name/nm0414988/) doing what he does best? I suggest you have to watch it first one before watching the sequel, just in case you'll have an idea what the story is like and get a little history background.

---

[Denil et al., 2014]

---

[Denil et al., 2014]

---

[Denil et al., 2014]
Today ConvNets are everywhere

Whale recognition, Kaggle Challenge

Mnih and Hinton, 2010
Today ConvNets are everywhere

Image Captioning

[Vinyals et al., 2015]
Today ConvNets are everywhere

reddit.com/r/deepdream
Frameworks

- Torch [http://torch.ch/](http://torch.ch/) Very efficient. But you must LIKE Lua …Google and Facebook love it
- Theano [http://deeplearning.net/software/theano/](http://deeplearning.net/software/theano/) Compiled from Python. Not as efficient as Torch
- CXXNet [https://github.com/dmlc/cxxnet](https://github.com/dmlc/cxxnet) Simpler than Caffe. More efficient
- Parameter Server bindings to [https://github.com/dmlc/](https://github.com/dmlc/) Minerva, Caffe, CXXNet, …