Lecture 2:
- Machine Learning by Examples
- Nearest-Neighbour
Machine Learning
(by examples)
Pose Estimation
Collaborative Filtering

Don’t mix preferences on Netflix!

Amazon books
Imitation Learning in Games

Avatar learns from your behavior

Black & White
Lionsgate Studios
Reinforcement Learning

https://www.youtube.com/watch?v=lLeRKHsJBJ0
Cheque Reading

segment image

Photograph Front of Check
Place the check on a dark background in a well-lit area, the camera steady and align the check's edges with the edges of the photograph.

recognize handwriting

Note: Fidelity cannot act on any written instructions
Image Layout

- Raw set of images from several cameras
- Joint layout based on image similarity
Search Ads

why these ads?
Google Self-Driving Cars

- Google’s self-driving car passes 300,000 miles (Forbes, 8/15/2012)
Speech Recognition

Given an audio waveform, robustly extract & recognize any spoken words

- Statistical models can be used to
 - Provide greater robustness to noise
 - Adapt to accent of different speakers
 - Learn from training
Natural Language Processing

I need to hide a body

noun, verb, preposition, …
Sudhakar et al., Multi-view Face Detection Using Deep Convolutional Neural Networks, 2015
Face Detection

Yang et al., From Facial Parts Responses to Face Detection: A Deep Learning Approach, ICCV 2015
Topic Models of Text Documents

slide by Eric Sudderth

The New York Times
WIKIPEDIA
The Free Encyclopedia

Neural Information Processing Systems Foundation
Visual Scene Understanding

- skyscraper
- sky
- buildings
- trees
- temple
- dome
- bell
Learning - revisited

Prior knowledge → Learning → Knowledge

Data → Learning
Learning - revisited

Learning

prior knowledge

knowledge

data

Crucial open problem: weak intermediate forms of knowledge that support future generalizations.
Programming with Data

• Want adaptive robust and fault tolerant systems
• Rule-based implementation is (often)
 - difficult (for the programmer)
 - brittle (can miss many edge-cases)
 - becomes a nightmare to maintain explicitly
 - often doesn’t work too well (e.g. OCR)

• Usually easy to obtain examples of what we want
 IF x THEN DO y

• Collect many pairs \((x_i, y_i)\)
• Estimate function \(f\) such that \(f(x_i) = y_i\) (supervised learning)
• Detect patterns in data (unsupervised learning)
Objectives of Machine Learning

• **Algorithms:** design of efficient, accurate, and general learning algorithms to
 – deal with large-scale problems.
 – make accurate predictions (unseen examples).
 – handle a variety of different learning problems.

• **Theoretical questions:**
 – what can be learned? Under what conditions?
 – what learning guarantees can be given?
 – what is the algorithmic complexity?
Definitions and Terminology

• **Example:** an object, instance of the data used.

• **Features:** the set of attributes, often represented as a vector, associated to an example (e.g., height and weight for gender prediction).

• **Labels:** in classification, category associated to an object (e.g., positive or negative in binary classification); in regression real value.

• **Training data:** data used for training learning algorithm (often labeled data).
Definitions and Terminology (cont’d.)

- **Test data**: data used for testing learning algorithm (unlabeled data).

- **Unsupervised learning**: no labeled data.

- **Supervised learning**: uses labeled data.

- **Weakly of semi-supervised learning**: intermediate scenarios.

- **Reinforcement learning**: rewards from sequence of action.
Supervised Learning
Supervised Learning

- **Binary classification**
 Given x find y in $\{-1, 1\}$

- **Multicategory classification**
 Given x find y in $\{1, \ldots, k\}$

- **Regression**
 Given x find y in \mathbb{R}^d (or \mathbb{R})

- **Sequence annotation**
 Given sequence $x_1 \ldots x_l$ find $y_1 \ldots y_l$

- **Hierarchical Categorization (Ontology)**
 Given x find a point in the hierarchy of y (e.g. a tree)

- **Prediction**
 Given x_t and $y_{t-1} \ldots y_1$ find y_t

often with loss $l(y, f(x))$
Binary Classification
Multiclass Classification + Annotation
Regression

- Linear:
 \[y = 0.98x - 0.01 \]
 \[r^2 = 0.496 \]

- Nonlinear:

Copyright © 2004 Pearson Prentice Hall, Inc.
Sequencing Annotation

given sequence

gene finding

speech recognition

activity segmentation

named entities
Ontology

webpages

genes
Prediction

tomorrow’s stock price
Unsupervised Learning

As in latent Dirichlet allocation (LDA) [Blei et al., 2003], we consider a topic to be a distribution over words and each document to be described by a distribution over topics. In LDA, each document has a unique distribution over topics if they inhabit the same node. Each node's topic is described by a distribution over topics. In TREE-STRUCTURED STICK BREAKING PROCESSES, we...
Unsupervised Learning

• Given data x, ask a good question ... about x or about model for x

• Clustering
 Find a set of prototypes representing the data

• Principal Components
 Find a subspace representing the data

• Sequence Analysis
 Find a latent causal sequence for observations
 • Sequence Segmentation
 • Hidden Markov Model (discrete state)
 • Kalman Filter (continuous state)

• Hierarchical representations

• Independent components / dictionary learning
 Find (small) set of factors for observation

• Novelty detection
 Find the odd one out
Clustering

- Documents
- Users
- Webpages
- Diseases
- Pictures
- Vehicles
...
Principal Components

Variance component model to account for sample structure in genome-wide association studies, Nature Genetics 2010
Sequence Analysis

Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project, Nature 2007
Hierarchical Grouping

We also used our approach in a bag-of-words topic model, applying it to 1740 papers from ~

Alex Smola

Hierarchical Modeling of Document Topics.

http://cs.nyu.edu/
Independent Components

find them automatically
Novelty detection

typical atypical
Important challenges in ML

- How important is the actual learning algorithm and its tuning
- Simple versus complex algorithm
- Overfitting
- Model Selection
- Regularization
Your 1st Classifier: Nearest Neighbor Classifier
Concept Learning

• **Definition:** Acquire an operational definition of a general category of objects given positive and negative training examples.

• Also called binary classification, binary supervised learning
Concept Learning Example

- **Instance Space X**: Set of all possible objects describable by attributes (often called features).

- **Concept c**: Subset of objects from X (c is unknown).

- **Target Function f**: Characteristic function indicating membership in c based on attributes (i.e. label) (f is unknown).

- **Training Data S**: Set of instances labeled with target function.

<table>
<thead>
<tr>
<th></th>
<th>correct</th>
<th>color</th>
<th>original</th>
<th>presentation</th>
<th>binder</th>
<th>A+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>complete</td>
<td>yes</td>
<td>yes</td>
<td>clear</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>complete</td>
<td>no</td>
<td>yes</td>
<td>clear</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>partial</td>
<td>yes</td>
<td>no</td>
<td>unclear</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>complete</td>
<td>yes</td>
<td>yes</td>
<td>clear</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Slide by Thorsten Joachims
Concept Learning as Learning a Binary Function

• **Task**
 – Learn (to imitate) a function $f: X \rightarrow \{+1,-1\}$

• **Training Examples**
 – Learning algorithm is given the correct value of the function for particular inputs \rightarrow training examples
 – An example is a pair (x, y), where x is the input and $y=f(x)$ is the output of the target function applied to x.

• **Goal**
 – Find a function $h: X \rightarrow \{+1,-1\}$ that approximates $f: X \rightarrow \{+1,-1\}$ as well as possible.
Supervised Learning

• **Task**
 – Learn (to imitate) a function $f: X \rightarrow Y$

• **Training Examples**
 – Learning algorithm is given the correct value of the function for particular inputs \rightarrow training examples
 – An example is a pair $(x, f(x))$, where x is the input and $y=f(x)$ is the output of the target function applied to x.

• **Goal**
 – Find a function
 $$h: X \rightarrow Y$$
 that approximates
 $$f: X \rightarrow Y$$
 as well as possible.
Supervised / Inductive Learning

• Given
 • examples of a function \((x, f(x))\)

• Predict function \(f(x)\) for new examples \(x\)
 • Discrete \(f(x)\): Classification
 • Continuous \(f(x)\): Regression
 • \(f(x) = \text{Probability}(x)\): Probability estimation
Appropriate Applications for Supervised Learning

- Situations where there is no human expert
 \(x \): Bond graph for a new molecule.
 \(f(x) \): Predicted binding strength to AIDS protease molecule.

- Situations where humans can perform the task but can’t describe how they do it.
 \(x \): Bitmap picture of hand-written character
 \(f(x) \): Ascii code of the character

- Situations where the desired function is changing frequently
 \(x \): Description of stock prices and trades for last 10 days.
 \(f(x) \): Recommended stock transactions

- Situations where each user needs a customized function \(f \)
 \(x \): Incoming email message.
 \(f(x) \): Importance score for presenting to user (or deleting without presenting).
Image Classification: a core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

[Image of a cat]

→ cat
The problem: semantic gap

Images are represented as 3D arrays of numbers, with integers between [0, 255].

E.g.
300 x 100 x 3

(3 for 3 color channels RGB)
Challenges: Viewpoint Variation
Challenges: Illumination
Challenges: Deformation
Challenges: Occlusion
Challenges: Background clutter
Challenges: Intraclass variation
An image classifier

```python
def predict(image):
    # ????
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.
Attempts have been made
Data-driven approach:
1. Collect a dataset of images and labels
2. Use Machine Learning to train an image classifier
3. Evaluate the classifier on a withheld set of test images
First classifier: **Nearest Neighbor Classifier**

```python
def train(train_images, train_labels):
    # build a model for images -> labels...
    return model

def predict(model, test_images):
    # predict test_labels using the model...
    return test_labels
```

- Remember all training images and their labels
- Predict the label of the most similar training image
Example dataset: CIFAR-10

10 labels

50,000 training images, each image is tiny: 32x32
10,000 test images.
Example dataset: **CIFAR-10**

10 labels

50,000 training images

10,000 test images.

For every test image (first column), examples of nearest neighbors in rows.
How do we compare the images? What is the distance metric?

L1 distance:

\[
d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|
\]

<table>
<thead>
<tr>
<th>test image</th>
<th>training image</th>
<th>pixel-wise absolute value differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 32 10 18</td>
<td>10 20 24 17</td>
<td>46 12 14 1</td>
</tr>
<tr>
<td>90 23 128 133</td>
<td>8 10 89 100</td>
<td>82 13 39 33</td>
</tr>
<tr>
<td>24 26 178 200</td>
<td>12 16 178 170</td>
<td>12 10 0 30</td>
</tr>
<tr>
<td>2 0 255 220</td>
<td>4 32 233 112</td>
<td>2 32 22 108</td>
</tr>
</tbody>
</table>

\[\text{add} \rightarrow 456\]
import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

 def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

 def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i, :]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

 return Ypred
import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

 def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N ""
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

 def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for ""
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

 return Ypred
for every test image:
- find nearest train image with L1 distance
- predict the label of nearest training image
Q: how does the classification speed depend on the size of the training data?
Q: how does the classification speed depend on the size of the training data? linearly :(
Aside: Approximate Nearest Neighbor
find approximate nearest neighbors quickly

ANN: A Library for Approximate Nearest Neighbor Searching
David M. Mount and Sunil Arya
Version 1.1.2
Release Date: Jan 27, 2010

What is ANN?
ANN is a library written in C++, which supports data structures and algorithms for both exact and approximate nearest neighbor searching in arbitrarily high dimensions.

In the nearest neighbor problem a set of data points in d-dimensional space is given. These points are preprocessed into a data structure, so that given any query point q, the nearest or generally k nearest points of P to q can be reported efficiently. The distance between two points can be defined in many ways. ANN assumes that distances are measured using any class of distance functions called Minkowski metrics. These include the well known Euclidean distance, Manhattan distance, and max distance.

Based on our own experience, ANN performs quite efficiently for point sets ranging in size from thousands to hundreds of thousands, and in dimensions as high as 20. (For applications in significantly higher dimensions, the results are rather spotty, but you might try it anyway.)

The library implements a number of different data structures, based on kd-trees and box-decomposition trees, and employs a couple of different search strategies.

The library also comes with test programs for measuring the quality of performance of ANN on any particular data sets, as well as programs for visualizing the structure of the geometric data structures.

FLANN - Fast Library for Approximate Nearest Neighbors

What is FLANN?
FLANN is a library for performing fast approximate nearest neighbor searches in high dimensional spaces. It contains a collection of algorithms we found to work best for nearest neighbor search and a system for automatically choosing the best algorithm and optimum parameters depending on the dataset.

FLANN is written in C++ and contains bindings for the following languages: C, MATLAB and Python.

News
- (14 December 2012) Version 1.0.0 is out bringing incremental addition/removal of points to/from indexes
- (20 December 2011) Version 1.0.0 is out bringing two new index types and several other improvements.
- You can find binary installers for FLANN on the Point Cloud Library project page. Thanks to the PCL developers!
- Mac OS X users can install flann through MacPorts (thanks to Mark Moll for maintaining the Portfile)
- New release introducing an easier way to use custom distances, kd-tree implementation optimized for low dimensionality search and experimental MPI support
- New release introducing new C++ templated API, thread-safe search, save/load of indexes and more.
- The FLANN license was changed from LGPL to BSD.

How fast is it?
In our experiments we have found FLANN to be about one order of magnitude faster on many datasets (in query time), than previously available approximate nearest neighbor search software.

Publications
More information and experimental results can be found in the following papers:
- Marcus Mjua and David G. Lowe: "Fast Matching of Binary Features", Conference on Computer and Robot Vision (CRV) 2012. [PDF] [BibTex]
- Marcus Mjua and David G. Lowe, "Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration", In International Conference on Computer Vision Theory and Applications (VISAPP'09), 2009 [PDF] [BibTex]
The choice of distance is a hyperparameter common choices:

L1 (Manhattan) distance

\[d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p| \]

L2 (Euclidean) distance

\[d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2} \]
k-Nearest Neighbor

find the k nearest images, have them vote on the label

K-Nearest Neighbor (kNN)

• Given: Training data \((x_1, y_1), \ldots, (x_n, y_n)\)
 – Attribute vectors: \(x_i \in X\)
 – Labels: \(y_i \in Y\)

• Parameter:
 – Similarity function: \(K : X \times X \rightarrow R\)
 – Number of nearest neighbors to consider: \(k\)

• Prediction rule
 – New example \(x'\)
 – K-nearest neighbors: \(k\) train examples with largest \(K(x_i, x')\)

\[
h(x') = \arg \max_{y \in Y} \left\{ \sum_{i \in knn(x')} 1[y_i = y] \right\}
\]
1-Nearest Neighbor
4-Nearest Neighbors
4-Nearest Neighbors Sign
Example dataset: **CIFAR-10**

- **10 labels**
- **50,000** training images
- **10,000** test images.

For every test image (first column), examples of nearest neighbors in rows.
What is the best **distance** to use?
What is the best value of k to use?

i.e. how do we set the **hyperparameters**?

We will talk about this later!
If we get more data

- 1 Nearest Neighbor
 - Converges to perfect solution if clear separation
 - Twice the minimal error rate $2p(1-p)$ for noisy problems
- k-Nearest Neighbor
 - Converges to perfect solution if clear separation (**but needs more data**)
 - Converges to minimal error $\min(p, 1-p)$ for noisy problems if k increases
Weighted K-Nearest Neighbor

• Given: Training data \((x_1, y_1), \ldots, (x_n, y_n)\)
 – Attribute vectors: \(x_i \in X\)
 – Target attribute \(y_i \in Y\)

• Parameter:
 – Similarity function: \(K : X \times X \rightarrow R\)
 – Number of nearest neighbors to consider: \(k\)

• Prediction rule
 – New example \(x'\)
 – K-nearest neighbors: \(k\) train examples with largest \(K(x_i, x')\)

\[
h(x') = \arg \max_{y \in Y} \left\{ \sum_{i \in \text{knn}(x')} 1[y_i = y] K(x_i, x') \right\}
\]
More Nearest Neighbors in Visual Data
Where in the World? [Hays & Efros, CVPR 2008]

A nearest neighbor recognition example
Where in the World? [Hays & Efros, CVPR 2008]
Where in the World? [Hays & Efros, CVPR 2008]
6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users
6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users
Scene Matches
Scene Matches

[Image of Notre Dame de Paris and other images labeled with cities: Paris, Rome, Madrid, Cuba, Poland, and Paris.]
Scene Matches
The Importance of Data

Percentage of Geolocations within 200km

First Nearest Neighbor Scene Match
Chance - Random Scenes

Database size (thousands of images, log scale)
Scene Completion [Hays & Efros, SIGGRAPH07]

Original

Input

Scene Matches

Output
Context Matching
Graph cut + Poisson blending
Weighted K-NN for Regression

- Given: Training data \((x_1, y_1), \ldots, (x_n, y_n) \)
 - Attribute vectors: \(x_i \in X \)
 - Target attribute: \(y_i \in \mathcal{R} \)

- Parameter:
 - Similarity function: \(K : X \times X \rightarrow \mathcal{R} \)
 - Number of nearest neighbors to consider: \(k \)

- Prediction rule
 - New example \(x' \)
 - K-nearest neighbors: \(k \) train examples with largest \(K(x_i, x') \)

\[
h(x') = \frac{\sum_{i \in \text{knn}(x')} y_i K(x_i, x')} {\sum_{i \in \text{knn}(x')} K(x_i, x'')} \]
Collaborative Filtering

<table>
<thead>
<tr>
<th>Rating Matrix</th>
<th>m₁</th>
<th>m₂</th>
<th>m₃</th>
<th>m₄</th>
<th>m₅</th>
<th>m₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>u₁</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>u₂</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>u₃</td>
<td>2</td>
<td>4</td>
<td></td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>u</td>
<td>?</td>
<td>1</td>
<td>4</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Recently Watched
- THE LAST ENEMY
- GEORGE GENTLY

Top 10 for Thorsten
- MI-5
- LOVE THE BEAST

slide by Thorsten Joachims
Overview of Nearest Neighbors

• Very simple method

• Retain all training data
 - Can be slow in testing
 - Finding NN in high dimensions is slow

• Metrics are very important

• Good baseline
Next Class:
Linear Regression and Least Squares